Leonardo's Notebook Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2324   Accepted: 988 Description — I just bought Leonardo's secret notebook! Rare object collector Stan Ucker was really agitated but his friend, special investigator Sa…
题目:http://poj.org/problem?id=3128 从环的角度考虑. 原来有奇数个点的环,现在点数不变: 原来有偶数个点的环(设有 k 个点),现在变成两个大小为 k/2 的环. 所以判断一下现在的有偶数个点的环是不是成双成对的就行了. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int n,c…
题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd97f192279e9fb.html 结论一: 一个长度为 l 的循环 T,l 是 k 的倍数,则 T^k 是 k 个循环的乘积,每个循环分别是循环 T 中下标 i mod k=0,1,2- 的元素按顺序的连接. 结论二:一个长度为 l 的循环 T,gcd(l,k)=1,则 T^k 是一个循环,与循环 T 不一…
传送门 题意:26个大写字母的置换$B$,是否存在置换$A$满足$A^2=B$ $A^2$,就是在循环中一下子走两步 容易发现,长度$n$为奇数的循环走两步还是$n$次回到原点 $n$为偶数的话是$\frac{n}{2}$次,也就是说分裂成了两个循环 综上$B$中长度为偶数的循环有奇数个就是不存在啦 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #inclu…
http://poj.org/problem?id=3128 大致题意:输入一串含26个大写字母的字符串,能够把它看做一个置换.推断这个置换是否是某个置换的平方. 思路:具体解释可參考url=ihxGpxX7x7ba4dROfWpQ0wlucC03fhDtKuEETsQjYUePKN41PnCBqm0lKrAeDfPXddo8i_1l3834K7iGivkTD-bsu1lAFYS6W55CKqvr13_" style="color:rgb(255,153,0); text-decora…
[Poj3128]Leonardo's Notebook 标签: 置换 题目链接 题意 给你一个置换\(B\),让你判断是否有一个置换\(A\)使得\(B=A^2\). 题解 置换可以写成循环的形式,所以我们不妨来研究循环平方的特性. 对于一个奇数长度的循环\[(a_1 a_2 a_3 a_4 ...... a_{2n+1}),(a_1 a_2 a_3 a_4 ...... a_{2n+1})(a_1 a_2 a_3 a_4 ...... a_{2n+1})=(a_1 a_3 a_5 .....…
给出一个26个大写字母的置换B,是否存在A2 = B 每个置换可以看做若干个循环的乘积.我们可以把这些循环看成中UVa 10294的项链, 循环中的数就相当于项链中的珠子. A2就相当于将项链旋转了两个珠子间的距离,珠子0.2.4...构成一个循环,一共有gcd(n, 2)个循环,每个循环的长度为n / gcd(n, 2) 所以当一个循环的长度为奇数的时候,平方以后还是原来的长度: 当一个循环的长度为偶数的时候,平方以后就会分解为两个长度都等于原来循环长度一半的循环. 先将置换B分解循环,对于其…
题意: 给出26个大写字母的置换B,问是否存在一个置换A,使得A2 = B 解析: 两个长度为n的相同循环相乘,1.当n为奇数时结果也是一个长度为n的循环:2. 当n为偶数时分裂为两个长度为n/2 (这个n/2可能是奇数 也可能是偶数)的循环 那么倒推 意思也就是说 对于长度为奇数的循环B(奇数个相同长度的倒推1  偶数个相同长度的倒推2)  总可以找出来一个循环A  使得A2 = B 而对于长度为偶数的循环B   只有偶数个相同长度的才能从2倒推 不然 就不能倒推 即找不到一个A使得A2 =…
题意:给定一个置换 B 问是否则存在一个置换 A ,使用 A^2 = B. 析:可以自己画一画,假设 A = (a1, a2, a3)(b1, b2, b3, b4),那么 A^2 = (a1, a2, a3)(b1, b2, b3, b4)(a1, a2, a3)(b1, b2, b3, b4),不相关循环可以有交换律. A^2 = (a1, a2, a3)(a1, a2, a3)(b1, b2, b3, b4)(b1, b2, b3, b4),分别考虑这两个循环,可以得到两个奇循环置换后仍然…
题目链接:https://vjudge.net/problem/UVA-12103 题意: 给出大写字母“ABCD……Z”的一个置换B,问是否存在一个置换A,使得A^2 = B. 题解: 对于置换,有以下结论: 其中“结论三”是一般性结论. 因此: 1.对于长度为len的循环T,则T^2为gcd(len,2)个循环.即:当len为偶数时,T^2分解成gcd(len,2)=2个循环,且每个循环的长度为len/2:当len为奇数时,T为gcd(len,2)=1个循环. 2.根据第一点的分析,将置换B…
题目:http://poj.org/problem?id=2154 置换的第二道题! 需要优化!式子是ans=∑n^gcd(i,n)/n (i∈1~n),可以枚举gcd=g,则有phi( n/g )个数与n的gcd是g. g是n的约数,成对出现,可以O(sqrt(n))枚举.用不断 /p 的log(n)做法求单个的phi.(不用专门看p是不是质数,此处可以保证一定是质数) 注意pw里的x传进去要先%mod!!!因为它是1e9级别的,一开始(x*=x)%=mod的时候会爆. 如果把n开成long…
题意 PDF 分析 给出一个26个大写字母的置换B,是否存在A^2 = B 每个置换可以看做若干个循环的乘积.我们可以把这些循环看成中UVa 10294的项链, 循环中的数就相当于项链中的珠子. A^2就相当于将项链旋转了两个珠子间的距离,珠子0.2.4...构成一个循环,一共有gcd(n, 2)个循环,每个循环的长度为n / gcd(n, 2) 所以当一个循环的长度为奇数的时候,平方以后还是原来的长度: 当一个循环的长度为偶数的时候,平方以后就会分解为两个长度都等于原来循环长度一半的循环. 先…
http://poj.org/problem?id=1426 测试了一番,从1-200的所有值都有long long下的解,所以可以直接用long long 存储 从1出发,每次向10*s和10*s+1转移,只存储余数即可, 对于余数i,肯定只有第一个余数为i的最有用,只记录这个值即可 #include <cstdio> #include <cstring> #include <queue> using namespace std; const int maxn=222…
http://poj.org/problem?id=3279 明显,每一位上只需要是0或者1, 遍历第一行的所有取值可能,(1<<15,时间足够)对每种取值可能: 对于第0-n-2行,因为上一行和本身行都已确定,所以可以确定下一行 最后检查第n-1行是否满足条件即可 #include <cstdio> #include <cstring> #include <algorithm> #include <queue> using namespace…
[题意] 给出26个大写字母组成 字符串B问是否存在一个置换A使得A^2 = B [分析] 置换前面已经说了,做了这题之后有了更深的了解. 再说说置换群.   首先是群. 置换群的元素是置换,运算时是置换的连接. 前面已经说了,每个置换都可以写成互不相交的循环的乘积. 然后分析一下这题. 假设A置换是(a1,a2,a3)(b1,b2,b3,b4)   [这里用循环表示 那么A*A=(a1,a2,a3)(b1,b2,b3,b4)(a1,a2,a3)(b1,b2,b3,b4) 不相交的循环满足交换律…
题目:http://poj.org/problem?id=3590 bzoj 1025 的弱化版.大概一样的 dp . 输出方案的时候小的环靠前.不用担心 dp 时用 > 还是 >= 来转移,因为答案的那个 lcm 有唯一分解. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ,M=; int T,n,dp…
题目大意: 给出一个A~Z的置换G,问能否找到一个A~Z的置换G' 能够用来表示为 G = G'*G' 由定理: 任意一个长为 L 的置换的k次幂,都会把自己的每一个循环节分裂成gcd(L, K)份,并且每一份的长度都为L/gcd(L,K) 这里是置换的平方,所以G'长度为偶数的循环节必然会分裂为两个相等的循环节,长度为奇数的循环节还是一个循环节长度不变 那么得到的G中长度为偶数的循环节必然是由G'中偶数的循环节分裂得到,奇数的循环节可以不多做考虑,就认为它是原来的奇数循环节保持不变所得 所以这…
置换的开方. 看看Pan的那篇集训论文.此处,可以想到,开方时,由于gcd(l,2),则必然有若是循环长度为偶数,必定是成对出现的.若是奇数,既可以是偶数也可以是奇数,因为,通过二次方后,循环长度为偶数的可以分裂成偶数的两个也可以是奇数的两个. #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std; char str[…
也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有多少种本质不同的染色方式,本质不同的两种染色方式必须旋转不能互相得到. 输入方式: 第一行 \(t,\)表示t组数据 接下来\(t\)组数据: 每组数据第一行为\(n,m,k\) 接下来\(k\)行,每行两个数\(x,y\)表示不允许\(x,y\)颜色连在一起. 答案对9973取模 \((1 ≤ n…
 1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,<组合数学>里面有讲.对于置换的幂运算大家可以参考一下潘震皓的那篇<置换群快速幂运算研究与探讨>,写的很好. *简单题:(应该理解概念就可以了) pku3270 Cow Sorting http://acm.pku.edu.cn/JudgeOnline/problem?id=3270 pku…
UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B.求是否存在A使得A^2=B 思路:随意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) 分, 而且每一份的长度都为 L / gcd(l,k).因此平方对于奇数长度不变,偶数则会分裂成两份长度同样的循环,因此假设B中偶数长度的循环个数不为偶数必定不存在A了 代码: #include <stdio.h> #include <string.h> const int N = 30…
转自:http://blog.sina.com.cn/s/blog_6635898a0100magq.html 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能完全看懂了,理解了再去做题,不要只记个公式. *简单题:(直接用套公式就可以了) pku2409 Let it Bead      http://acm.pku.edu.cn/JudgeOnline/problem?id=2409 pku2154 Co…
Color Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7630   Accepted: 2507 Description Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of th…
题目链接:http://poj.org/problem?id=1651 思路:除了头尾两个数不能取之外,要求把所有的数取完,每取一个数都要花费这个数与相邻两个数乘积的代价,需要这个代价是最小的 用dp[i][j]表示区间[i,j]的最小代价,那么就有dp[i][j]=min(dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]) i+1<=k<=j-1 #include<cstdio> #include<iostream> #include<algor…
链接:http://poj.org/problem?id=3280 思路:题目给出n种m个字符,每个字符都有对应的添加和删除的代价,求出构成最小回文串的代价 dp[i][j]代表区间i到区间j成为回文串的最小代价,那么对于dp[i][j]有三种情况: 1.dp[i+1][j]表示区间i+1到区间j已经是回文串了的最小代价,那么对于s[i]这个字母,我们有两种操作,删除与添加,对应有两种代价,dp[i+1][j]+add[s[i]],dp[i+1][j]+del[s[i]],取这两种代价的最小值:…
题目链接:http://poj.org/problem?id=2955 思路:括号匹配问题,求出所给序列中最长的可以匹配的长度(中间可以存在不匹配的)例如[(])]有[()]符合条件,长度为4 dp[i][j]代表从区间i到区间j所匹配的括号的最大个数,首先,假设不匹配,那么dp[i][j]=dp[i+1][j]:然后查找i+1~~j有木有与第i个括号匹配的 有的话,dp[i][j]=max(dp[i][j],dp[i+1][k-1]+dp[k][j]+2)..... #include<cstd…
题目链接:http://poj.org/problem?id=3728 思路:题目的意思是求树上a -> b的路径上的最大收益(在最小值买入,在最大值卖出). 我们假设路径a - > b 之间的LCA(a, b) = f, 并且另up[a]表示a - > f之间的最大收益,down[a]表示f - > a之间的最大收益,dp_max[a]表示a - > f之间的最大值,dp_min[a]表示a - > f之间的最小值,于是可以得出关系: ans[id] = max(ma…
题目链接:http://poj.org/problem?id=1816 思路:建好一颗Trie树,由于给定的模式串可能会重复,在原来定义的结构体中需要增加一个vector用来记录那些以该节点为结尾的字符串的序号,然后就是匹配的过程了,需要注意的是,对于‘?'和'*',每一次都是可以匹配的,并且对于'*',还得枚举所需要匹配的长度(从0开始).由于最后的答案可能会有重复,一开始我没有判断时候有重复的,WA了好多次=.=!!. #include <iostream> #include <cs…
题目链接:http://poj.org/problem?id=1463 思路:简单树形dp,如果不选父亲节点,则他的所有的儿子节点都必须选,如果选择了父亲节点,则儿子节点可选,可不选,取较小者. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> using namespace std; #define MAXN 22…
题目链接:http://poj.org/problem?id=2378 思路:num[u]表示以u为根的子树的顶点个数(包括),如果去掉u之后u的每棵子树都小于等于n/2,则选择u. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> using namespace std; #define MAXN 11111 #d…