欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是让更多的人了解机器学习的概念,理解其原理,学会应用.希望与志同道合的朋友一起交流,我刚刚设立了了一个技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入,在交流中拉通--算法与技术,让理论研究与实际应用深度融合:也希望能有大牛能来,为大家解惑授业,福泽大众.推广开放与共享的精神.如果人多…
"机器学习/深度学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是让很多其它的人了解机器学习的概念,理解其原理,学会应用.如今网上各种技术类文章非常多,不乏大牛的精辟见解,但也有非常多滥竽充数.误导读者的.这个系列对教课书籍和网络资源进行汇总.理解与整理,力求一击中的,通俗易懂.机器学习非常难,是由于她有非常扎实的理论基础,复杂的公式推导:机器学习也非常easy,是由于对她不甚了解的人也能够轻易使用.我希望好好地梳理一些基础方法模型,输出一些真正有长期參…
本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ...,x_n) \tag{1} \] \[Y = f(X) = a_1x_1 + a_2x_2 + ... a_nx_n + b \tag{2} \] 来预测 \(Y\)的数值.例如对于人的两个属性 (鞋码,体重) 来预测 身高 .从上面来看线性模型的表达式简单.比较容易建模,但是却有很好的解释性.比如…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识,线性回归因为它的简单,易用,且可以求出闭合解,被广泛地运用在各种机器学习应用中.事实上,除了单独使用,线性回归也是很多其他算法的组成部分.线性回归的缺点也是很明显的,因为线性回归是输入到输出的线性变换,拟合能力有限:另外,线性回归的目标值可以是(−∞,+∞),而有的时候,目标值的范围是[0,1](可…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 希望与志同道合的朋友一起交流,我刚刚设立了了一个技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面两篇回归(一)(二)复习了线性回归,以及L1与L2正则--lasso和ridge regression.特别描述了lasso的稀疏性是如何产生的.在本篇中介绍一下和lasso可以产生差不多效果的两种feature selection的方法,forward stagewise s…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工作够用.周期会比较长,因为我还想写一些其他的,呵呵. content: linear regression, Ridge, Lasso Logistic Regression, Softmax Kmeans, GMM, EM, Spectral Clustering Dimensionality R…
美团网基于机器学习方法的POI品类推荐算法 前言 在美团商家数据中心(MDC),有超过100w的已校准审核的POI数据(我们一般将商家标示为POI,POI基础信息包括:门店名称.品类.电话.地址.坐标等).如何使用这些已校准的POI数据,挖掘出有价值的信息,本文进行了一些尝试:利用机器学习方法,自动标注缺失品类的POI数据.例如,门店名称为"好再来牛肉拉面馆"的POI将自动标注"小吃"品类. 机器学习解决问题的一般过程:本文将按照:1)特征表示:2)特征选择:3)基…
特征向量 1.特征向量:以人为例,每个元素可能就对应这人的某些方面,这就是特征,例如:身高.年龄.性别.国际....2.特征工程:目的就是将现有数据中可作为信号的特征与那些仅是噪声的特征区分开来:当数据的维度(即特征的数量)相对于样本量来说比较大时,特征工程就具有较高的失败风险. 机器学习方法 1.机器学习方法一般都具有以下几部分: 1>模型的表示: 2>用于评估模型优度的目标函数: 3>一种优化方法,可以通过学习找出一个模型,使目标函数值最小化或最大化.2.机器学习一般分为监督式学习和…
imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page=2 这个专利可以去国家专利局网站查询,有具体文档. https://www.jianshu.com/p/3e8b9f2764c8 机器学习已经成为了当前互联网领域不可或缺的技术之一,前辈们对机器学习模型的研究已经给我们留下了一笔非常宝贵的财富,然而在工业界的应用中我们可以看到,应用场景千千万万,数…
原文:http://blog.csdn.net/abcjennifer/article/details/7797502 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…