利用word2vec对关键词进行聚类】的更多相关文章

1.收集预料 自己写个爬虫去收集网页上的数据. 使用别人提供好的数据http://www.sogou.com/labs/dl/ca.html 2.对预料进行去噪和分词 我们需要content其中的值,通过简单的命令把非content 的标签干掉 cat news_tensite_xml.dat | iconv -f gbk -t utf- -c | grep "<content>" > corpus.txt 分词可以用jieba分词: #!/usr/bin/env p…
http://www.cnblogs.com/LBSer/p/4605904.html Kmeans算法是一种非监督聚类算法,由于原理简单而在业界被广泛使用,一般在实践中遇到聚类问题往往会优先使用Kmeans尝试一把看看结果.本人在工作中对Kmeans有过多次实践,进行过用户行为聚类(MapReduce版本).图像聚类(MPI版本)等.然而在实践中发现初始点选择与聚类结果密切相关,如果初始点选取不当,聚类结果将很差.为解决这一问题,本博文尝试将模拟退火这一启发式算法与Kmeans聚类相结合,实践…
前言 在上一篇写文章没高质量配图?python爬虫绕过限制一键搜索下载图虫创意图片!中,我们在未登录的情况下实现了图虫创意无水印高清小图的批量下载.虽然小图能够在一些移动端可能展示的还行,但是放到pc端展示图片太小效果真的是很一般!建议阅读本文查看上一篇文章,在具体实现不做太多介绍,只讲个分析思路. 当然,本文可能技术要求不是特别高,但可以当作一个下图工具使用. 环境:python3+pycharm+requests+re+BeatifulSoup+json 在这里插入图片描述这个确实也属实有一…
最近针对之前发表的一篇博文<Deep Learning 在中文分词和词性标注任务中的应用>中的算法做了一个实现,感觉效果还不错.本文主要是将我在程序实现过程中的一些数学细节整理出来,借此优化一下自己的代码,也希望为对此感兴趣的朋友提供点参考.文中重点介绍训练算法中的模型参数计算,以及 Viterbi 解码算法. 相关链接: <Deep Learning 在中文分词和词性标注任务中的应用> <Deep Learning for Chinese Word Segmentation…
一直听说word2vec在处理词与词的相似度的问题上效果十分好,最近自己也上手跑了跑Google开源的代码(https://code.google.com/p/word2vec/). 1.语料 首先准备数据:采用网上博客上推荐的全网新闻数据(SogouCA),大小为2.1G. 从ftp上下载数据包SogouCA.tar.gz: wget ftp://ftp.labs.sogou.com/Data/SogouCA/SogouCA.tar.gz --ftp-user=hebin_hit@foxmai…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:2013年末,Google发布的 word2vec工具引起了一帮人的热捧,大家几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼"深度学习在自然语言领域开始发力 了". 基于word2vec现在还出现了doc2vec,word2vec相比传统,考虑单词上下文的语义:但是doc2vec不仅考虑了单词上下文的语义,…
word2vec word2vec/glove/swivel binary file on chinese corpus word2vec: https://code.google.com/p/word2vec/ glove: http://nlp.stanford.edu/projects/glove/ swivel: https://github.com/tensorflow/models/tree/master/swivel http://arxiv.org/abs/1602.02215…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…
在文本聚类.文本分类或者比较两个文档相似程度过程中,可能会涉及到TF-IDF值的计算.这里主要讲述基于Python的机器学习模块和开源工具:scikit-learn.        希望文章对你有所帮助,相关文章如下:        [python爬虫] Selenium获取百度百科旅游景点的InfoBox消息盒        Python简单实现基于VSM的余弦相似度计算        基于VSM的命名实体识别.歧义消解和指代消解        [python] 使用Jieba工具中文分词及文…
聚类是一种无监督的学习,它将相似的对象归到同一簇中.它有点像全自动分类.聚类方法几乎可以应用到所有对象,簇内的对象越相似,聚类的效果越好. K-均值(K-means)聚类算法,之所以称之为K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成. 簇识别(cluster identification)给出簇类结果的含义.假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么. K-均值聚类算法 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据…