kmeans算法的matlab实践】的更多相关文章

把图像中所有的像素点进行RGB聚类分析,然后输出看结果 img = imread('qq.png'); %取出R矩阵,并将这个R矩阵拉成一列 imgR = img(:,:,1); imgR = imgR(:); %取出G矩阵,并将这个G矩阵拉成一列 imgG = img(:,:,2); imgG = imgG(:); %取出B矩阵,并将这个B矩阵拉成一列 imgB = img(:,:,3); imgB = imgB(:); %把R G B拼起来 每一行代表每个点的RGB值 总计有 W*H行 im…
K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.采用iris数据库 iris_data.txt 5.1 3.5 1.4 0.2 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2 3.6 1.4 0.2 5.4 3.9 1.7 0.4…
K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现它. 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.采用iris数据库 iris_data.txt 5.1 3.5 1.4 0.2 4.9 3 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2 5 3.6 1.4 0…
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢?     那我们就用K-means算法进行划分吧. 算法很简单,这么做就可以啦: 第一步:随机初始化每种类别的中心点,u1,u2,u3,--,uk; 第二步:重复以下过程: 然后 ,就没有然后了,就这样子. 太简单, 不解释. 2017年10月14日补: 今晚造了一个轮子,k-means算法在matl…
kmeans一般在数据分析前期使用,选取适当的k,将数据聚类后,然后研究不同聚类下数据的特点. 算法原理: (1) 随机选取k个中心点: (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类: (3) 更新中心点为每类的均值: (4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步数,误差不变. 空间复杂度o(N) 时间复杂度o(I*K*N) 其中N为样本点个数,K为中心点个数,I为迭代次数 为什么迭代后误差逐渐减小: SSE=  对于 而言,求导…
1. MATLAB函数Kmeans 使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K) […]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…) 各输入输出参数介绍:X: N*P的数据矩阵,N为数据个数,P为单个数据维度K: 表示将X划分为几类,为整数Idx: N*1的向量,存储的是每个点的聚类标号C: K*P的矩阵,存储的是K个聚类质…
K-means是一种经典的聚类算法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 假设要把样本集分为c个类别,算法描述如下: (1)适当选择c个类的初始中心: (2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类: (3)利用均值等方法更新该类的中心值: (4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值…
在数据挖掘中聚类和分类的原理被广泛的应用. 聚类即无监督的学习. 分类即有监督的学习. 通俗一点的讲就是:聚类之前是未知样本的分类.而是根据样本本身的相似性进行划分为相似的类簇.而分类 是已知样本分类,则需要将样本特征和分类特征进行匹配,进而将每个样本归入给出的特定的类. 由于本文是对聚类算法中的k-means算法的实现,所以接下来主要进行一些聚类算法的介绍. 聚类算法包括多种,可按如下分配: 1.划分法:基于此种思想的聚类算法包括 k-means,PAM,CLARA,CLARANS,STIRR…
机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,…
上一篇博客写了k-means聚类算法和改进的k-means算法.这篇博客就贴出相应的MATLAB和C++代码. 下面是MATLAB代码,实现用k-means进行切割: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 功能:实现怎样利用Kmeans聚类实现图像的切割. 时间:2015-07 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function kmeans_segmentation() clear;c…