传送门 解题思路 第一种方法是状压\(dp\),设\(f(S)\)为状态\(S\)到取完的期望步数,那么\(f(S)\)可以被自己转移到,还可以被\(f(S|(1<<i))\)转移到,\(i\)为\(S\)中没有的一个元素. 第二种方法是\(Min-Max\)反演,要求的其实就是\(max(S)\),反演得\(max(S)=\sum\limits_{T\subseteq S}min(T)\),而\(min(T)=\sum p(i)\)(\(i\)是\(T\)的子集). 代码 状压 #inclu…
Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award.  As a…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题目大意:有n种卡片,需要吃零食收集,打开零食,出现第i种卡片的概率是p[i],也有可能不出现卡片.问你收集齐n种卡片,吃的期望零食数是多少? 状态压缩:f[mask],代表收集齐了mask,还需要吃的期望零食数. 打开包装,有3种情况,第一种:没有卡片,概率(1-sigma(p[i])) 第二种,在已知种类中:概率sigma(p[j]) 第三种,在未知种类中:p[k] 因此 f[mask]…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/Others)Memory Limit: 32768/32768 K (Java/Others) 问题描述 In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that,…
题意:每包干脆面可能开出卡或者什么都没有,一共n种卡,每种卡每包爆率pi,问收齐n种卡的期望 思路:期望求解公式为:$E(x) = \sum_{i=1}^{k}pi * xi + (1 - \sum_{i = 1}^{k}pi) * [1 + E(x)]$,即能转换到x情况的期望+x情况原地踏步的期望. 因为n比较小,我们可以直接状压来表示dp[x]为x状态时集齐的期望.那么显然dp[111111111] = 0.然后我们状态反向求解.最终答案为dp[0]. 然后来看期望的求解:$E(x) =…
Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3407    Accepted Submission(s): 1665Special Judge Problem Description In your childhood, do you crazy for collecting the beautiful…
正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\leq 20$,那不就,显然考虑状压$dp$? 转移也很$easy$鸭,设$f_{s}$表示已经获得的卡片状态为$s$时候的期望次数 不难得到转移方程,$f_s=\sum_{i\notin{S}}f_{s|\{i\}}\cdot p_i+(1-\sum_{i\notin{S}}p_i)\cdot f_s…
题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2711    Accepted Submission(s): 1277Special Judge Problem Description In your childhood, do you crazy for collecting the beaut…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意: 一共有n种卡片.每买一袋零食,有可能赠送一张卡片,也可能没有. 每一种卡片赠送的概率为p[i],问你将n种卡片收集全,要买零食袋数的期望. 题解: 表示状态: dp[state] = expectation state表示哪些卡片已经有了 找出答案: ans = dp[0] 什么都没有时的期望袋数 如何转移: 两种情况,要么得到了一张新的卡片,要么得到了一张已经有的卡片或者啥都没有.…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意: 有n种卡片(n <= 20). 对于每一包方便面,里面有卡片i的概率为p[i],可以没有卡片. 问你集齐n种卡片所买方便面数量的期望. 题解: 状态压缩. 第i位表示手上有没有卡片i. 表示状态: dp[state] = expectation (卡片状态为state时,要集齐卡片还要买的方便面数的期望) 找出答案: ans = dp[0] 刚开始一张卡片都没有. 如何转移: now:…