hdu 4474 大整数取模+bfs】的更多相关文章

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4474 (a*10+b)%c = ((a%c)*10+b%c)%c; 然后从高位开始枚举能填的数字填充,只是注意最高位(第一位)不能为0. 代码: #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #include<string> #include<…
进制转换 + 大整数取模一,题意: 在b进制下,求p%m,再装换成b进制输出. 其中p为b进制大数1000位以内,m为b进制数9位以内二,思路: 1,以字符串的形式输入p,m; 2,转换:字符串->整数 十进制->b进制; 3,十进制下计算并将整形结果转换成字符串形式,并倒序储存; 4,输出.三,步骤: 1,输入p[],m[]; 2,字符串->整形 + 进制->b进制: i,进制转换语句:m2 = m2*b + m[j]-'0'; ii,大整数取模,大整数可以写成这样的形式: 12…
2170. 大整数取模 ★   输入文件:bigint.in   输出文件:bigint.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 输入正整数n和m,输出n mod m的值.n≤10^100,m≤10^10. [输入格式] 一行,两个正整数,即n和m. [输出格式] 一行,一个整数,即余除的结果. [样例输入] 1234 10 [样例输出] 4 [提示] 在此键入. [来源] 在此键入. 思路:水题 #include<iostream> #include&…
瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1215    Accepted Submission(s): 600 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几…
3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status][Discuss] Description 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1…
Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 27277   Accepted: 7197 Description You may have heard that no two snowflakes are alike. Your task is to write a program to determine whether this is really true. Your program will read info…
typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数 输入:C(n,m)%p 调用lucas(n,m,p) 复杂度:min(m,p)*log(m) ***********************************/ //ax + by = gcd(a,b) //传入固定值a,b.放回 d=gcd(a,b), x , y…
因为这里是MOD最大为100000 所以我将字符串看作5个一组,并记录后面跟了多少个100000 每次取5个数根据其数据进行取模更新 注意过程中 100000*100000会超int #include <cstdio> #include <cstring> #include <iostream> using namespace std; #define ll long long int b; ]; int main() { // freopen("a.in&q…
求所有不超过1e9的 primitive Pythagorean triple中第2大的数取模$2^k$作为下标,对应a[i]数组的和. 先上WIKI:https://en.wikipedia.org/wiki/Pythagorean_triple 里面有通过欧几里得公式来得到有关毕达哥拉斯式子的一些性质. 最后得到的一个关于互质的m,n变种的式子更加直观,因此枚举m,n,保证其合法.每次枚举n,筛掉和n有共同因子的m,范围是$\sqrt{1e9}$.然后由于要求的是b,而且取模的都是2的幂指,…
LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; } return ret; } LL C(int n, int m) { ) ; LL a = fact[n], b = fact[n - m] * fact[m] % MOD; ) % MOD;//除以一个数,等于乘以这个数的乘法逆元, 然后是在MOD的情况下 } 上面的代码可以计算组合数取模, 能解决的规…