首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
】的更多相关文章
bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][Status] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Input 6 Sampl…
BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
bzoj 2705 [SDOI2012]Longge的问题——欧拉函数大水题
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n)的阶乘,RE得不行.发现用到了大于sqrt (n)的阶乘. 然后翻看TJ. 发现phi可以现求!就用那个式子.我竟然都忘了! 注意最后剩下的一个大于sqrt (i)的质因数. #include<iostream> #include<cstdio> #include<cstrin…
BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=2705 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sam…
BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好. 注意到h(n) = ∑ d * phi(n / d) (d | n) 是狄利克雷卷积的形式, 而且f(x) = x 和 f(x) = phi(x) 都是积性函数, 所以答案h(x) 也是积性函数. 所以h(x) = Π h(p^k) (p 是 x 的质因数) 由phi(p^k) = p^k -…
[bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Input 6 Sample Output 15 HINT [数据范围] 对于60%的数据,0<N<=2^16. 对于100%的数据,0<N<…
BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $∑_{i=1}^{N}gcd(i,N)$ $=∑_{i=1}^{N}∑_{d|gcd(i,N)}\phi(d)$ $=∑ \phi(d)∑ _{1=<i<=N \land d|i \land d|N}1$ $=∑_{d|N}\phi(d)\lfloor\frac{i}{d}\rfloor$ [代码…
BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)
题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n) &=\sum_{d=1}^nd\sum_{i=1}^n[\gcd(i,n)=d]\\ &=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}[\gcd(i,\lfloor\frac{n}{d}\rfloor)=1] \end{aligne…