将选择导师看成先选阵营再选派系,这样有显然的O(nm2)暴力,即按城市排序后,设f[i][j][k]为前i个学校中第一个阵营有j人第一个派系有k人的方案数,暴力背包. 对于k=0,可以发现选阵营和选派系是两个独立的过程.于是O(nm)暴力背包再将方案数相乘即可. 考虑原题,注意到如果一个城市不包含有限制的学校,可以直接使用k=0的方法:对于同城市存在有限制学校而自身没有限制的,其选择派系的过程与限制无关,可以将这部分背包,而选择阵营的过程则和有限制学校放在一起用最开始的暴力完成,这里同一城市的无…
[BZOJ5498][十二省联考2019]皮配(动态规划) 题面 BZOJ 洛谷 题解 先考虑暴力\(dp\),设\(f[i][j][k]\)表示前\(i\)所学校,有\(j\)人在某个阵营,有\(k\)人在某个派系的方案数. 发现如果\(k=0\),那么可以先决策每个城市选择哪一个阵营,再对于每个学校选择哪一个派系.显然两者之间不冲突,分开\(dp\)再乘起来就行了. 加入限制,每个限制的形式即在某个城市选定了某个阵营之后,这个学校只有一种选择. 先把没有限制的部分处理完,首先这些学校单独拎出…
LINK:皮配 我承认是一道很难的题目. 不过对于这道题 部分分的提示显得尤为重要. 首先是 40分的暴力dp 很容易想 但是不容易写. 从40分可以发现我们只需要把蓝阵营和鸭派系的人数给存在起来就行了 此时可以获得50分. 观察题目中存在k==0的情况 可以发现 加入阵营和派系没有什么关系 所以就可以分开的做. 考虑100分 容易发现有毒的学校就30个 对于这三十个城市单独做暴力dp 剩下的按照上述方法. 一个难点:可以发现 学校选择的派系是影响城市的 所以感觉这样做不太行. 把有毒的城放在一…
啊啊啊边界判错了搞死我了QAQ 这题是一个想起来很休闲写起来很恶心的背包 对于\(k=0\)的情况,可以发现选阵营和选派系是独立的,对选城市选阵营和学校选派系分别跑一遍01背包就行了 对于\(k>0\)的情况,设\(f[i][0/1][j][k]\)表示对于第\(i\)个有限制的学校,该学校选择\(0/1\)阵营时,\(C0\)阵营有\(j\)人,\(D0\)派系有\(k\)人的方案数 转移要分类讨论,有点麻烦,看代码吧 // luogu-judger-enable-o2 #include <…
传送门 首先考虑一个正常的dp,设\(f_{i,j,k}\)为前\(i\)个学校,\(j\)人在\(\color{#0000FF}{蓝阵营}\),\(k\)人在\(\color{#654321}{吔}\)派系的方案,转移枚举选哪个导师就好了,注意一个城市要选同一阵营,所以可以多开一维\(0/1\)表示当前城市在哪个阵营 \(k=0\)的情况,可以发现选\(\color{#654321}{吔}\)派系的\(Yazid\)和\(Zayid\)都会增加\(\color{#654321}{吔}\)派系人…
题目链接 题目描述 略 Sol 一道背包问题 首先暴力做法设 \(dp[i][j][k]\) 表示前 \(i\) 个城市的学校被分到第一阵营 \(j\) 人 第一门派 \(k\) 人的方案数. 中间一个城市里的学校就再枚举是分到那个阵营然后01背包 dp 一下门派就行了. 然后似乎就没有什么 dp 上的优化空间了. 注意到 \(k=0\) 时,一个学校被分到一个阵营后,它能够贡献人数的门派不会受到它被分配的阵营的影响. 所以我们可以先为所有的 \(k=0\) 的学校分配好门派,这就是个01背包,…
先考虑80分做法,即满足A串长度均不小于B串,容易发现每个B串对应的所有A串在后缀数组上都是一段连续区间,线段树优化连边然后判环求最长链即可.场上就写了这个. 100分也没有什么本质区别,没有A串长度不小于B串的性质后,区间连边变成了矩形连边,用主席树或KDTree优化连边即可,当然主席树会更靠谱,这里写了KDTree,在loj上T掉了. #include<bits/stdc++.h> using namespace std; #define ll long long #define N 20…
LOJ#3051. 「十二省联考 2019」皮配 当时我在考场上觉得这题很不可做... 当然,出了考场后再做,我还是没发现学校和城市是可以分开的,导致我还是不会 事实上,若一个城市投靠了某个阵营,学校可以任意选择派系,但是反过来看,学校选择了派系,也不影响城市投靠什么阵营,而这两者共同固定了一个学校选择的导师,所以对于k = 0的情况 我们设两个dp,\(g[i][j]\)表示考虑了前i个城市,去蓝阵营的人数为j,\(h[i][j]\)表示考虑了前i个城市,去鸭派系的人数为j,最后只需要把合法的…
题目链接: [十二省联考2019]字符串问题 首先考虑最暴力的做法就是对于每个$B$串存一下它是哪些$A$串的前缀,然后按每组支配关系连边,做一遍拓扑序DP即可. 但即使忽略判断前缀的时间,光是连边的时间就会爆炸,显然不能暴力连边. 对于前缀不好解决,可以将字符串翻转然后变成判断是否是后缀. 可以发现对于后缀自动机的$parent$树,每个节点是子树内所有节点的后缀. 那么我们可以利用$parent$树来优化建图过程,将树上每个点向子节点连边. 对于每个$A$串和$B$串在后缀自动机上匹配出对应…
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出与他异或起来最大的左端点并将这组信息用结构体存起来插入堆中. 那么最大值就是堆顶那组(假设右端点为$r$),但考虑到次大值可能出自同一个右端点,所以在弹出堆顶后还需要将以$r$为右端点的次大值插入堆中. 那么如何求出以$r$为右端点的最大值和次大值? 我们对序列每个数为一个版本建可持久化$trie$…