BZOJ4036 按位或】的更多相关文章

题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min(T) $$ $$min(S)=\sum{T \in S} {(-1)}^{|T|+1} max(T) $$ 然后再在外面套个期望 $$E(max(S))=\sum{T \in S} {(-1)}^{|T|+1} E(min(T))$$ hdu 4336 定义大小比较为出现时间早晚 $E(max(S)…
解:有两种做法...... 第一种,按照秘密袭击coat的套路,我们只需要求出即可.因为一种操作了i次的方案会被恰好计数i次. 那么这个东西怎么求呢?直接用FWT的思想,对于一个状态s,求出选择s所有子集的概率ps.那么第i次操作后是s的子集的概率就是psi. 设fs表示第i次操作之后是s的子集的概率. 把所有的f求出来之后做一次IFWT即可.然后我们对于所有非全集求和. 参考资料. #include <bits/stdc++.h> , M = ; ; double f[M], p[M], w…
概念 Min-Max容斥,又称最值反演,是一种对于特定集合,在已知最小值或最大值中的一者情况下,求另一者的算法. 例如: $$max(a,b)=a+b-min(a,b) \\\ max(a,b,c)=a+b+c-min(a,b)-min(a,c)-min(b,c)+min(a,b,c)$$ 显然,将所有数取相反数,易知用最大值求最小值的公式与用最小值求最大值的公式形式相同.以下只讨论用最小值求最大值的方法. 形式 记 $Max(S)$ 表示集合 $S$ 的最大值,$Min(S)$ 表示集合 $S…
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机选择一个 $[0,2^n-1]$ 的数字,与你手上的数字进行 $OR$ (按位或) 操作. 选择数字 $i$ 的概率是 $p_i$ .保证 $0\leq p_i\leq 1$ ,$\sum_{i=0}^{2^n-1}p_i=1$ . 问期望多少秒后,你手上的数字变成 $2^n-1$ . $n\leq…
[BZOJ4036][HAOI2015]按位或 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or)操作.选择数字i的概率是p[i].保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1. Input 第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率 Output 仅输出一个数表示答案,绝对误差或相对误差不超过1e-6即可算通过.如果无…
[BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的期望,\(min\)同理. 那么\(E(max\{S\})=\sum_{T\subseteq S}(-1)^{|T|}E(min\{T\})\) 考虑怎么求\(E(min\{T\})\),很容易发现只需要或上了任何一位就行了. 也就是 \[E(min\{T\})=\frac{1}{\sum_{G\c…
bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\sube S} (-1)^{|T|+1} min(T) $ 并且很优秀的是,它在期望情况下成立! 这个有什么关系呢.. 如果每一位分开考虑,如果第 $ i $ 位变成 1 的期望时间是 $ T(i) $ 那么求的是 $ E(max(T_{1\dots n})) $ 这个可以 min-max容斥 求 $…
考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S>0)=1-∑p[s] (s&S==0).做一个高维前缀和即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<cstdlib>…
题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = \sum\limits_{T \subseteq S} (-1)^{|T| + 1}E(min\{T\})\] 那么问题就转化为了求每个集合中最早出现的\(1\)的期望时间 假如在\(k\)时刻出现,那么前\(k - 1\)时刻一定都是取的补集的子集,记\(T\)补集的所有子集概率和为\(P\) \…
Portal --> bzoj4036 Solution  感觉容斥的东西内容有点qwq多啊qwq还是以题目的形式来慢慢补档好了  这里补的是min-max容斥 ​    其实min-max容斥好像..只是一个形式而已..本质还是普通容斥==  记\(max(S)\)表示集合\(S\)中最大的元素,记\(min(S)\)表示集合中最小的元素,那么: \[ max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1}min(T)\\ min(S)=\sum\limit…