设向量函数 ${\bf B}(x,y,z)=(B_x,B_y,B_z)$ 在 $z\neq 0$ 时具有一阶连续偏导数, 在 $z=0$ 时具有第一类间断, 且 $$\bex \Div{\bf B}=0,\quad z\neq 0. \eex$$ 若 $B_z$ 在 $z=0$ 时连续, 试证明存在连续向量函数 ${\bf A}(x,y,z)$ 使 $$\bex {\bf B}=\rot{\bf A}. \eex$$ 证明: 在引理 6. 1 的证明中取 $(x_0,y_0,z_0)=(0,0…