动态DP之全局平衡二叉树】的更多相关文章

目录 前置知识 全局平衡二叉树 大致介绍 建图过程 修改过程 询问过程 时间复杂度的证明 板题 前置知识 在学习如何使用全局平衡二叉树之前,你首先要知道如何使用树链剖分解决动态DP问题.这里仅做一个简单的回顾,建议在有一定基础的情况下看. 首先,维护序列的动态DP我们就不说了,这里只讨论树上的动态DP问题. 然后,目前个人感觉,动态DP往往有一些奇怪的特征. 一般问题是支持动态修改某一个点的权值,以及询问根节点的(也就是全局的)或者是某一个子树的DP值. 而通常是从静态的情况下入手,写出一个结构…
不得不承认,去年提高组 D2T3 对动态 DP 起到了良好的普及效果. 动态 DP 主要用于解决一类问题.这类问题一般原本都是较为简单的树上 DP 问题,但是被套上了丧心病狂的修改点权的操作.举个例子,我们来看一道例题. [模板]动态 DP 给定一棵 \(n\) 个点的树.\(i\) 号点的点权为 \(a_i\).有 \(m\) 次操作,每次操作给定 \(u, w\),表示修改点 \(u\) 的权值为 \(w\).你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 我们首先考虑没有修改的情…
动态dp初探 动态区间最大子段和问题 给出长度为\(n\)的序列和\(m\)次操作,每次修改一个元素的值或查询区间的最大字段和(SP1714 GSS3). 设\(f[i]\)为以下标\(i\)结尾的最大子段和,\(g[i]\)表示从起始位置到\(i\)以内的最大子段和. \[ f[i]=\max(f[i-1]+a[i],a[i])\\g[i]=\max(g[i-1],f[i]) \] 定义如下的矩阵乘法,显然这满足乘法结合律和分配律. \[ C=AB\\C[i,j]=\max_{k}(A[i,k…
题意 题目描述 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点\(x\)的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 输入输出格式 输入格式: 第一行,\(n,m\),分别代表点数和操作数. 第二行,\(V_1,V_2,...,V_n\),代表\(n\)个点的权值. 接下来\(n-1\)行,\(x,y\),描述这棵树的\(n-1\)条边. 接下来\(m\)行,\(x,y\),修改点\(x\)的权值为\(y\).…
动态DP 何为动态DP? 将画风正常的DP加上修改操作. 举个例子? 给你一个长度为\(n\)的数列,从中选出一些数,要求选出的数互不相邻,最大化选出的数的和. 考虑DP,状态设计为\(f[i][1/0]\)表示考虑了前\(i\)个数,第\(i\)个数选/不选的最大和. 状态转移方程显然为: \[f[i][0]=max(f[i-1][0],f[i-1][1])\] \[f[i][1]=f[i-1][0]+a[i]\] 很简单对不对? 改成这样呢? 给你一个长度为\(n\)的数列.有\(m\)次操…
序列 dp 引入:最大子段和 给定一个数列 \(a_1, a_2, \cdots, a_n\)(可能为负),求 \(\max\limits_{1\le l\le r\le n}\left\{\sum_{i=l}^ra_i\right\}\). 这是一个经典的 动态规划 问题:设 \(f_{i}\) 为以 \(a_i\) 结尾的最大子段和,设 \(g_{i}\) 为前 \(i\) 个数的最大子段和.那么显然有: \[\begin{cases} f_i = \max(f_{i-1} + a_i, 0…
[模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上加上修改操作,从而使得问题变成动态的问题 这道题的问题就是普通的树形\(DP\)上加上了修改点权的操作 题意: 给定一棵 \(n\) 个点的树.\(i\) 号点的点权为 \(a_i\).有 \(m\) 次操作,每次操作给定 \(u\),\(w\),表示修改点 \(u\) 的权值为 \(w\).你需要在每次操作…
题意 给出 \(n\) 个点的树,每个时刻可能出现一条路径 \(A_i\) 或者之前出现的某条路径 \(A_i\) 消失,每条路径有一个权值,求出在每个时刻过后能够找到的权值最大的路径(指所有和该路径有交的路径 \(A\) 的权值和) \(B\) 的权值是多少. \(n\leq 10^5\) 分析 结论:两条树上路径有交,则一定有一条路径经过另一条路径的 \(lca\). 根据上面的性质我们考虑用树形dp的方式求解. 将一条路径的权值在每个点 \(x\) 关系分成两种: \(a\) :路径的 \…
勾起了我悲伤的回忆 -- NOIP2018 316pts -- 主要思想:将 DP 过程分解为方便单点修改和一个区间合并的操作(通常类似矩阵乘法),然后用数据结构(通常为线段树)维护. 例:给定一个长为 \(n\) 的整数序列,相邻两个数最多选一个,有 \(m\) 次修改序列中的一个数,求每次修改后选出数之和的最大值. \(n,m\leq 10^5\) . 如果不会做不带修改的情况,请默默摁 Ctrl + w 然后去学 DP 入门 如果不带修改,明显设 \(f_{i,0/1}\) 表示当第 \(…
题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把DP转移方程写成矩阵乘法,然后用线段树(树上的话就是树剖)维护矩阵,这样就可以做到修改了. 注意这个"矩阵乘法"不一定是我们常见的那种乘法和加法组成的矩阵乘法.设\(A * B = C\),常见的那种矩阵乘法是这样的: \[C_{i, j} = \sum_{k = 1}^{n} A_{i,…
我们经常会遇到一些问题,是一些dp的模型,但是加上了什么待修改强制在线之类的,十分毒瘤,如果能有一个模式化的东西解决这类问题就会非常好. 给定一棵n个点的树,点带点权. 有m次操作,每次操作给定x,y,表示修改点x的权值为y. 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 如果不带修改,那就是一个最简单是树形dp问题. 我们设一个dp[i][0],dp[i][1]表示以i为根的子树 动态dp能够使用的一个前提就是它的转移是线性的,这样我们就可以用矩阵乘法实现快速转移了. 注意:这里的…
动态DP其实挺简单一个东西. 把DP值的定义改成去掉重儿子之后的DP值. 重链上的答案就用线段树/lct维护,维护子段/矩阵都可以.其实本质上差不多... 修改的时候在log个线段树上修改.轻儿子所在重链的线段树的根拿去更新父亲的DP值. #include <cstdio> #include <algorithm> , INF = 0x3f3f3f3f; template <class T> inline void read(T &x) { x = ; char…
学习了一下动态DP 问题的来源: 给定一棵 \(n\) 个节点的树,点有点权,有 \(m\) 次修改单点点权的操作,回答每次操作之后的最大带权独立集大小. 首先一个显然的 \(O(nm)\) 的做法就是每次做一遍树形DP(这也是我在noip考场上唯一拿到的部分分),直接考虑如何优化这个东西. 简化一下问题,假如这棵树是一条链,那就变得很简单了,可以直接拿线段树维护矩阵加速. 可是如果每个点不止有一个儿子呢? 我们首先树剖一下. 设 \(g[i][0]=\sum\limits_{j\in ligh…
题目分析: 不难发现可以用动态DP做. 题目相当于是要我求一条路径,所有与路径有交的链的代价加入进去,要求代价最大. 我们把链的代价分成两个部分:一部分将代价加入$LCA$之中,用$g$数组保存:另一部分将代价加在整条链上,用$d$数组保存. 这时候我们可以发现,一条从$u$到$v$的路径的代价相当于是$d[LCA(u,v)]+\sum_{x \in edge(u,v)}g[x]$. 如果是静态的,可以用树形DP解决. 看过<神奇的子图>的同学都知道,叶子结点是从它的儿子中取两个最大的出来,所…
[复习]动态dp 你还是可以认为我原来写的动态dp就是在扯蛋. [Luogu4719][模板]动态dp 首先作为一个\(dp\)题,我们显然可以每次修改之后都进行暴力\(dp\),设\(f[i][0/1]\)表示当前考虑\(i\)及其子树内的点,当前这个点是选还是不选时能够得到的最大权值,那么我们可以得到转移:\(f[i][0]+=\max\{f[v][0],f[v][1]\},f[i][1]+=f[v][0]\),其中\(v\)是\(i\)的一个儿子. 那么这样子的复杂度就是\(O(qn)\)…
[BZOJ4911][SDOI2017]切树游戏(动态dp,FWT) 题面 BZOJ 洛谷 LOJ 题解 首先考虑如何暴力\(dp\),设\(f[i][S]\)表示当前以\(i\)节点为根节点,联通子树权值和为\(S\)的方案数,转移就是\(FWT\)的卷积,最后只需要把所有的\(f[i][k]\)全部加起来就可以得到最终的答案. 于是这样子的复杂度就是\(O(Qnmlogm)\).但实际上转移的时候不需要\(FWT\)回来,直接拿点值表示的数组做就可以了,这样子可以少一个\(log\). 那么…
可以直接套动态dp,但因为它询问之间相互独立,所以可以直接倍增记x转移到fa[x]的矩阵 #include<bits/stdc++.h> #define CLR(a,x) memset(a,x,sizeof(a)) using namespace std; typedef long long ll; typedef pair<int,int> pa; ; const ll inf=1e17; inline ll rd(){ ll x=;; ;c=getchar();} +c-',c…
题目链接: https://cn.vjudge.net/problem/34398/origin 本题的大意其实很简单,就是找回文串,大致的思路如下: 1. 确定一个回文串,这里用到了自定义的check函数原理如下: 传入le, ri两个值(定义从1开始), s+1 = aaadbccb. a a a d b c c b 1 2 3 4 5 6 7 8 比如,le = 5, ri = 8. 则s[5] == s[8]成立 le++ ri-- 再比较 s[6] == s[7]? 成立 le++,…
题意 题目链接 Sol 动态dp板子题.有些细节还没搞懂,待我研究明白后再补题解... #include<bits/stdc++.h> #define LL long long using namespace std; const int MAXN = 1e5 + 10, INF = INT_MAX; template<typename A, typename B> inline bool chmax(A &x, B y) { return x < y ? x = y…
题意 题目链接 Sol 这题可以动态dp做. 设\(f[i]\)表示以\(i\)为结尾的最大子段和,\(g[i]\)表示\(1-i\)的最大子段和 那么 \(f[i] = max(f[i - 1] + a[i], a[i])\) \(g[i] = max(g[i - 1], f[i])\) 发现只跟前一项有关,而且\(g[i]从\)f[i]$转移过来的那一项可以直接拆开 那么构造矩阵 \[ \begin{bmatrix} a_{i} & -\infty & \dots a_{i} \\ a…
[BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开了创造模式,然后飞到 山顶放了格水.于是小A面前出现了一个瀑布.作为平民的小A只好老实巴交地爬山堵水.那么问题来了:我们把这 个瀑布看成是一个n个节点的树,每个节点有权值(爬上去的代价).小A要选择一些节点,以其权值和作为代价将 这些点删除(堵上),使得根节点与所有叶子结点不连通.问最小代价.不过到…
背景:czy上课讲了新知识,从未见到过,总结一下. 所谓动态dp,是在动态规划的基础上,需要维护一些修改操作的算法. 这类题目分为如下三个步骤:(都是对于常系数齐次递推问题) 1先不考虑修改,不考虑区间,直接列出整个区间的dp方程.这个是基础,动态dp无论如何还是dp(这一步是一般是重点) 2.列出转移矩阵.由于有很多修改操作,我们将数据集中在一起处理,还可以利用矩阵结合律,并且区间比较好提取,(找一段矩阵就好了),修改也方便. 3.线段树维护矩阵.对于修改,我们就是在矩阵上进行修改,对于不同的…
国际惯例的题面:看起来很神的样子......如果我说这是动态DP的板子题你敢信?基于链分治的动态DP?说人话,就是树链剖分线段树维护DP.既然是DP,那就先得有转移方程.我们令f[i]表示让i子树中的叶子节点全部与根不联通,所需要的最小代价,v[i]为输入的点权.显然f[i]=min(v[i],sigma(f[soni])),边界条件是,如果i是叶子节点,则f[i]=v[i].我们需要用链分治去维护这个DP,所以要把DP拆成重链和轻链独立的形式.我们还是用f[i]表示让i子树中的叶子节点全部与根…
国际惯例的题面:这题......最大连通子块和显然可以DP,加上修改显然就是动态DP了......考虑正常情况下怎么DP:我们令a[i]表示选择i及i的子树中的一些点,最大连通子块和;b[i]表示在i的子树中选择一些点(不一定包含i),最大连通子块和.那么我们要询问i的子树的话,答案就是b[i]了.考虑这个DP怎么转移,a[i]=max(sigma(j:SON_i)a[j]+v[i],0),b[i]=max((j:SON_i)b[j],a[i]).陈俊锟说过,树上动态DP,就是把树拆成链,分离轻…
[BZOJ5210]最大连通子块和 Description 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树所有子连通块的点权和中的最大值 (本题中子连通块包括空连通块,点权和为0). Input 第一行两个整数n.m,表示树的点数以及操作的数目. 第二行n个整数,第i个整数w_i表示第i个点的点权. 接下来的n-1行,每行两个整数x.y,表示x和y之间有…
题目大意:给你一棵 $n$个点 以 $1$为根 的树,每个点有$ 0,1,2 $三种颜色之一,初始时整棵树的颜色均为 $0$. $m$ 次操作, 每次操作形如: 1 x y c : 将 $x$到$y$的路径上的点全部改为颜色$C$ 2 x : 询问 $x$ 所在的同色连通块大小 数据范围:$n,m≤10^5$. 此题一眼动态dp 首先我们先列出正常的dp式子 设$f[u]$表示以$u$为根的子树中,$u$所在的同色联通块大小 显然,$f[u]=1+\sum_{v∈son[u],col[u]=co…
题目链接 这个$dark$题,嗯,不想说了. 法一:动态$dp$ 虽然早有听闻动态$dp$,但到最近才学,如果你了解动态$dp$,那就能很轻松做出这道题了.故利用这题在这里科普一下动态$dp$的具体内容. 我们先不考虑点上的强制选不选的限制,这是一个最小权边覆盖问题,大家肯定都会这道题的$O(nm)$的做法,这是一个很经典的树形$dp$.具体来讲就是一下两个转移: $$f_{x, 0} = \sum_{v} f_{v, 1} \qquad  f_{x, 1} = a_{x} + \sum_{v}…
动态dp 瞎扯两句吧 先从序列上理解,维护链的最大独立集. 考虑是从左边转移的,那么矩阵的转移唯一,直接放在线段树上就可以了. 放在树上的话,儿子都可以转移,把轻儿子的转移放在子链链头更新,然后每条链都处理成序列就行了. 注意一点,因为维护的是序列,所以单点存放的矩阵是只含轻儿子和自己的贡献,相当于把轻儿子的子树缩给了自己,而重儿子维护的东西是通过线段树上维护的区间贡献过来的. 咕咕模板,最大全独立集 Code: #include <cstdio> #include <algorithm…
不难发现此题是一道动态$dp$题 考虑此题没有修改怎么做,令$f[i]$表示让以$i$为根的子树被覆盖的最小花费,不难推出$f[i]=min(\sum_{j∈son[i]} f[j],val[i])$. 依然采用树链剖分+线段树维护每一条链.线段树上每个节点维护$val1$和$val2$两个值. 其中$val1$表示$\sum_{(fa[i]∈U)\&(i∉V)}f[i]$.U为该区间上点的点集,V为该区间所在链的点集. $val2$表示以区间右端点为根的子树被覆盖的最小代价. 这东西随便维护一…
动态$dp$好题 考虑用树链剖分将整棵树剖成若干条链. 设x的重儿子为$son[x]$,设$x$所在链链头为$top[x]$ 对于重链上的每个节点(不妨设该节点编号为$x$)令$f[x]$表示以$x$为根的子树内(除以$son[x]$为根的子树),包含节点$x$的联通块的最大权值和. 我们求出一条重链上每个节点的f值后,考虑如何求出以$top[x]$为根的子树内的最大联通快. 我们考虑用线段树来合并每一个f值.我们用线段树维护四个值: $sum$,该区间内所有$f$值的总和 $suml$,以该区…