1.错误信息org.apache.spark.SparkException: Job aborted due to stage failure:Serialized task 32:5 was 1728746673 bytes, which exceeds max allowed: spark.rpc.message.maxSize (134217728 bytes). Consider increasing spark.rpc.message.maxSize or using broadcas…
1.spark在yarn模式下提交作业需要启动hdfs集群和yarn,具体操作参照:hadoop 完全分布式集群搭建 2.spark需要配置yarn和hadoop的参数目录 将spark/conf/目录下的spark-env.sh.template文件复制一份,加入配置: YARN_CONF_DIR=/opt/hadoop/hadoop-2.8.3/etc/hadoop HADOOP_CONF_DIR=/opt/hadoop/hadoop-2.8.3/etc/hadoop 3.将spark整个目…
1.spark standalone模式下,worker与executor是一一对应的. 2.如果想要多个worker,那么需要修改spark-env的SPARK_WORKER_INSTANCES为2,那么开启集群后, 每个节点就是两个worker了,然后启动任务后,每个节点就是两个executor啦 3.提高每个executor配置(即内核和内存)后,会增加集群的处理性能.  嗯,反正测试的结果就是这样的.  (同样的数据量同样的结点,然后executor的配置不同)…
spark on yarn模式下配置spark-sql访问hive元数据 目的:在spark on yarn模式下,执行spark-sql访问hive的元数据.并对比一下spark-sql 和hive的效率. 软件环境: hadoop2.7.3 apache-hive-2.1.1-bin spark-2.1.0-bin-hadoop2.7 jd1.8 hadoop是伪分布式安装的,1个节点,2core,4G内存. hive是远程模式. spark的下载地址: http://spark.apach…
KindEditor设置filterMode为true,但在代码模式下提交表单的话,发现并没有过虑掉自己不想保留的HTML标签. 这时只需同步内容前加上红色部分内容即可: onClick="if (!keditor.designMode){keditor.clickToolbar('source');}; keditor.sync();"…
spark可以运行在standalone,yarn,mesos等多种模式下,当前我们用的最普遍的是yarn模式,在yarn模式下又分为client和cluster.本文接下来将分析yarn cluster下任务提交的过程.也就是回答,在yarn cluster模式下,任务是怎么提交的问题.在yarn cluster模式下,spark任务提交涉及四个角色(client, application, driver以及executor)之间的交互.接下来,将详细分析这四个角色在任务提交过程中都做了那些事…
0.前言 0.1  分布式运算框架的核心思想(此处以MR运行在yarn上为例)  提交job时,resourcemanager(图中写成了master)会根据数据的量以及工作的复杂度,解析工作量,从而产生任务(有多少个MapTask以及多少个ReduceTask),然后根据各个nodemanage节点资源情况进行任务划分.最后得到结果存入hdfs中或者是数据库中 注意:由图可知,map任务和reduce任务在不同的节点上,那么reduce是如何获取经过map处理的数据呢?======>shuff…
目录 可以先用local模式读取一下 步骤 一.先将做测试的数据上传到HDFS 二.开发scala代码 standAlone模式查看HDFS上的文件 步骤 一.退出local模式,重新进入Spark-shell 二.开发scala代码 可以先用local模式读取一下 步骤 一.先将做测试的数据上传到HDFS cd /export/servers/sparkdatas hdfs dfs -mkdir -p /sparkwordcount hdfs dfs -put wordcount.txt /s…
Spark是一个内存迭代式运算框架,通过RDD来描述数据从哪里来,数据用那个算子计算,计算完的数据保存到哪里,RDD之间的依赖关系.他只是一个运算框架,和storm一样只做运算,不做存储. Spark程序可以运行在Yarn.standalone.mesos等平台上,standalone是Spark提供的一个分布式运行平台,分为master和worker两个角色. Standalone模式安装:只要修改一个文件即可 Spark-env.sh为: (master没有做HA) #指定JAVA_HOME…
standalone hdfs:namenode是主节点进程,datanode是从节点进程 yarn:resourcemanager是主节点进程,nodemanager是从节点进程 hdfs和yarn是hadoop里面的节点进程信息 在spark里面有 master:主节点进程 worker:从节点进程 使用standalone模式: 将$SPARK_HOME/conf/目录下的slaves.template修改为slaves后添加主机名,如果有5个台机器就应该进行如下slaves的配置hado…