一.前述 Spark中Standalone有两种提交模式,一个是Standalone-client模式,一个是Standalone-master模式. 二.具体         1.Standalone-client提交任务方式 提交命令             ./spark-submit --master  spark://node01:7077 --class org.apache.spark.examples.SparkPi  ../lib/spark-examples-1.6.0-ha…
Spark剖析-宽依赖与窄依赖.基于yarn的两种提交模式.sparkcontext原理剖析 一.宽依赖与窄依赖 二.基于yarn的两种提交模式深度剖析 2.1 Standalne-client 2.2 Standalone-cluster 三.sparkcontext原理剖析 一.宽依赖与窄依赖 二.基于yarn的两种提交模式深度剖析 Spark的三种提交模式: Spark内核架构中,其实就是第一种模式,standalone模式,基于Spark自己的Master-Worker集群. 第二种,基…
spark的两种提交模式:yarn-cluster . yarn-client 图解…
一.spark的三种提交模式 1.第一种,Spark内核架构,即standalone模式,基于Spark自己的Master-Worker集群. 2.第二种,基于YARN的yarn-cluster模式. 3.第三种,基于YARN的yarn-client模式. 如果,你要切换到第二种和第三种模式,在提交spark应用程序的spark-submit脚本加上--master参数,设置为yarn-cluster,或yarn-client,即可.如果没设置,那么,就是standalone模式. 一.基于YA…
一.前述 SparkStreamin是流式问题的解决的代表,一般结合kafka使用,所以本文着重讲解sparkStreaming+kafka两种模式. 二.具体 1.Receiver模式    原理图:  receiver模式理解: 在SparkStreaming程序运行起来后,Executor中会有receiver tasks接收kafka推送过来的数据.数据会被持久化,默认级别为MEMORY_AND_DISK_SER_2,这个级别也可以修改.receiver task对接收过来的数据进行存储…
一.前述 Spark可以和Yarn整合,将Application提交到Yarn上运行,和StandAlone提交模式一样,Yarn也有两种提交任务的方式. 二.具体      1.yarn-client提交任务方式 配置          在client节点配置中spark-env.sh添加Hadoop_HOME的配置目录即可提交yarn 任务,具体步骤如下:            注意client只需要有Spark的安装包即可提交任务,不需要其他配置(比如slaves)!!! 提交命令   .…
本文出自:Spark on YARN两种运行模式介绍http://www.aboutyun.com/thread-12294-1-1.html(出处: about云开发)   问题导读 1.Spark在YARN中有几种模式? 2.Yarn Cluster模式,Driver程序在YARN中运行,应用的运行结果在什么地方可以查看? 3.由client向ResourceManager提交请求,并上传jar到HDFS上包含哪些步骤? 4.传递给app的参数应该通过什么来指定? 5.什么模式下最后将结果输…
spark on mesos 有粗粒度(coarse-grained)和细粒度(fine-grained)两种运行模式,细粒度模式在spark2.0后开始弃用. 细粒度模式 优点 spark默认运行的就是细粒度模式,这种模式支持资源的抢占,spark和其他frameworks以非常细粒度的运行在同一个集群中,每个application可以根据任务运行的情况在运行过程中动态的获得更多或更少的资源(mesos动态资源分配),但是这会在每个task启动的时候增加一些额外的开销.这个模式不适合于一些低延…
Spark on YARN有两种运行模式,如下 1.yarn-cluster:适合于生产环境.        Spark的Driver运行在ApplicationMaster中,它负责向YARN ResourceManager申请资源,并监督作业的运行状况.当用户提交了作业之后,    就可以关掉Client(启动Spark作业的客户端不需要一直存在于整个Spark作业运行生命周期),作业会继续在YARN上运行.yarn-cluster不适合    交互式应用.            2.yar…
原文链接:Spark Streaming中空batches处理的两种方法 Spark Streaming是近实时(near real time)的小批处理系统.对给定的时间间隔(interval),Spark Streaming生成新的batch并对它进行一些处理.每个batch中的数据都代表一个RDD,但是如果一些batch中没有数据会发生什么事情呢?Spark Streaming将会产生EmptyRDD的RDD,它的定义如下: 01 package org.apache.spark.rdd…