< python for data analysis >一书的第十章例程, 主要介绍时间序列(time series)数据的处理.label:1. datetime object.timestamp object.period object2. pandas的Series和DataFrame object的两种特殊索引:DatetimeIndex 和 PeriodIndex3. 时区的表达与处理4. imestamp object.period object的频率概念,及其频率转换5. 两种频…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第四个实例:USDA Food Database 简介:美国农业部(USDA)制作了一份有关食物营养信息的数据 数据下载地址: https://github.com/wesm/pydata-book/tree/2nd-edition/datasets/usda_food 准备…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第三个实例:US Baby Names 1880-2010 简介: 美国社会保障总署(SSA)提供了一份从1880年到2010年的婴儿姓名频率的数据 数据地址: https://github.com/wesm/pydata-book/tree/2nd-edition/data…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第二个实例:MovieLens 1M Data Set 简介: GroupLens Research提供了从MovieLens用户那里收集来的一系列对90年代电影评分的数据 数据地址:http://files.grouplens.org/datasets/movielens/…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第一个实例:1.usa.gov data from bit.ly 简介:2011年,URL缩短服务bit.ly和美国政府网站usa.gov合作,提供了一份从生成.gov或.mil短链接用户那里收集来的匿名数据 数据下载地址:https://github.com/wesm/py…
# -*- coding:utf-8 -*-# <python for data analysis>第九章# 数据聚合与分组运算import pandas as pdimport numpy as npimport time # 分组运算过程 -> split-apply-combine# 拆分 应用 合并start = time.time()np.random.seed(10)# 1.GroupBy技术# 1.1.引文df = pd.DataFrame({ 'key1': ['a',…
<利用Python进行数据分析>第七章的代码. # -*- coding:utf-8 -*-# <python for data analysis>第七章, 数据规整化 import pandas as pdimport numpy as npimport time start = time.time()# 1.合并数据集,有merge.join.concat三种方式# 1.1.数据库风格的dataframe合并(merge & join)# merge函数将两个dataf…
<利用python进行数据分析>一书的第五章源码与读书笔记 直接上代码 # -*- coding:utf-8 -*-# <python for data analysis>第五章, pandas基础# 高级数据结构与操作工具 import pandas as pdimport numpy as npimport time start = time.time()# pandas的数据结构, series and dataframe# 1.series,类似一维数据, 一个字典,建立了…
<利用python进行数据分析>第四章的程序,介绍了numpy的基本使用方法.(第三章为Ipython的基本使用) 科学计算.常用函数.数组处理.线性代数运算.随机模块…… # -*- coding:utf-8 -*-# <python for data analysis>第四章, numpy基础# 数组与矢量计算import numpy as npimport time # 开始计时start = time.time() # 创建一个arraydata = np.array([[…
Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data/9781491957653/ Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second…
1.2 Why Python for Data Analysis?(为什么使用Python做数据分析) 这节我就不进行过多介绍了,Python近几年的发展势头是有目共睹的,尤其是在科学计算,数据处理,AI方面,否则大家也不会来看这本书了. 使用Python的一些优点 Python是一门胶水语言,可以把不同语言整合起来,比如上层代码使用Python编写,底层代码用C,C++等语言实现. 解决了两种语言的问题.以前做研究用一门语言写原型(比如R,SAS),效果好了才会用其他语言去重新实现一遍(比如J…
一.简介 Python for Data Analysis这本书的特点是将numpy和pandas这两个工具介绍的很详细,这两个工具是使用Python做数据分析非常重要的一环,numpy主要是做矩阵的运算,pandas主要是做数据的预处理,另外本书还教了其他数据分析相关的工具,比如matplotlib用来作图,iPython用来测试.调试代码.本书着重在工具介绍,所以在阅读前最好要对数据分析的理论有一定的了解. 二.Jupyter和Python的介绍 Jupyter是结合代码输入.运行到结果显示…
NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名空间 %run命令 %run 执行所有文件 %run -i 访问变量 Ctrl-C中断执行 %paste可以粘贴剪切板的一切文本 一般使用%cpaste因为可以改 键盘快捷键 魔术命令 %timeit 检测任意语句的执行时间 %magic显示魔术命令的详细文档 %xdel v 删除变量,并清除其一切引用 注册…
Data Analysis with Python ch02 一些有趣的数据分析结果 Male描述的是美国新生儿男孩纸的名字的最后一个字母的分布 Female描述的是美国新生儿女孩纸的名字的最后一个字母的分布…
打算写讲义,目录已经想好. Content basic of python jupyter 开发环境 python 基本语法 利用python脚本完成工作 numpy for matrix computation 向量化或矩阵化编程思想 numpy常见函数以及matlab对比 DataFrame for data analysis pandas 与sql对比 pyodps 中的dataFrame basic plotting skills 用matplotlib与ggplot画图 常用图形绘制方…
-----------------------------------------------------------Matplotlib:绘图和可视化------------------------------------------------------------------------------    Matplotlib:---------------------------------------------------是一个强大的Python绘图和数据可视化的工具包    一:…
<利用python进行数据分析>一书的第8章,关于matplotlib库的使用,各小节的代码. # -*- coding:utf-8 -*-import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dimport time # 1.matplotlib API入门# 1.1.Figure和Subplot# 创建figure对象fig = pl…
http://www.cnblogs.com/batteryhp/p/5025772.html python有许多可视化工具,本书主要讲解matplotlib.matplotlib是用于创建出版质量图表的桌面绘图包(主要是2D方面).matplotlib的目的是为了构建一个MATLAB式的绘图接口.本书中的大部分图都是用它生成的.除了图形界面显示,还可以把图片保存为pdf.svg.jpg.png.gif等形式. 1.matplotlib API入门 Ipython可以用close()关闭界面.…
首先pandas的作者就是这本书的作者 对于Numpy,我们处理的对象是矩阵 pandas是基于numpy进行封装的,pandas的处理对象是二维表(tabular, spreadsheet-like),和矩阵的区别就是,二维表是有元数据的 用这些元数据作为index更方便,而Numpy只有整形的index,但本质是一样的,所以大部分操作是共通的 大家碰到最多的二维表应用,关系型数据库中的表,有列名和行号,这些就是元数据 当然你可以用抽象的矩阵来对这些二维表做统计,但使用pandas会更方便  …
NumPy作为python科学计算的基础,为何python适合进行数学计算,除了简单易懂,容易学习 Python可以简单的调用大量的用c和fortran编写的legacy的库 Python科学计算的这几个库,单独安装还是蛮麻烦的,所以推荐这个包 http://www.continuum.io/downloads#all conda list #查看所有的可安装包   conda install wxpython #安装   conda install pyqt #安装   conda updat…
<利用python进行数据分析>第二章的姓名例子,代码.整个例子的所有代码集成到了一个文件中,导致有些对象名如year同时作为了列名与行名,会打印warning,可分不同的part依次运行.所有的作图代码均已注释,按需取消注释即可.用的工具.函数比较多,但是解释不多,后面各章再深入介绍.代码中仅保留了98年-08年的数据,更多数据-https://github.com/wesm/pydata-book # -*- coding:utf-8 -*-# names data set import…
第一章相对简单,也么有什么需要记录的内容,主要用到的工具的简介及环境配置,粗略的过一下就行了.下面我们开始第二章的学习 CHAPTER 22.2Python Language Basics, IPython, and Jupyter Notebooks when you first meet the python ,you may be confuse by In [6]: data = {i : np.random.randn() for i in range(7)} In [7]: data…
IPython Basics 首先比一般的python shell更方便一些 比如某些数据结构的pretty-printed,比如字典 更方便的,整段代码的copy,执行 并且可以兼容部分system shell , 比如目录浏览,文件操作等   Tab Completion 这个比较方便,可以在下面的case下,提示和补全未输入部分 a. 当前命名空间中的名字 b.对象或模块的属性和函数 c. 文件路径   Introspection, 内省 ?,在标识符前或后加上,显示出对象状况和docst…
一.文字处理 之前在练习爬虫时,常常爬了一堆乱七八糟的字符下来,当时就有找网络上一些清洗数据的方式,这边pandas也有提供一些,可以参考使用看看.下面为两个比较常见的指令,往往会搭配使用. split(“,”)可以将文字串分割,冒号里的为分割依据,左边的代码就是把两个冒号中间的文字串视为一个单元. strip()去除空白符号. 1.正则表达式 正则表达式为处理文字搜索匹配的功能,python可以直接导入re模块来使用.用法为下. 可直接用split来编译再拆解,也可以先用compile编译,再…
Q1:numpy与series的区别:index Tab补全(任意路径Tab) 内省(函数:?显示文档字符串,??显示源代码:结合通配符:np.* load *?) %load .py ctrl-c(强行中断) %timeit(执行时间)%debug? %pwd %matplotlib inline(否则你创建的图可能不会出现) 单行注释# 多行注释,多行字符串‘’‘ ’‘’ Q2:赋值,浅拷贝和深拷贝 1.赋值:简单地拷贝对象的引用,两个对象的id相同. 2.浅拷贝:创建一个新的组合对象,这个…
一.Pandas文件读写 pandas很核心的一个功能就是数据读取.导入,pandas支援大部分主流的数据储存格式,并在导入的时候可以做筛选.预处理.在读取数据时的选项有超过50个参数,可见pandas对于各式各样的数据都能有非常好的应对能力.下面先介绍基本的读取指令. 前面两个read_csv和read_table是用的比较多的两种.下面为实际操作的范例. 当然大部分的时候数据导入不会这么顺利,因为源数据里可能会有多种的分离方式,里面还会夹杂一些脏数据,所以pandas附上了一些选项来帮助导入…
一.pandas介绍 本篇程序上篇内容,在numpy下面继续介绍pandas,本书的作者是pandas的作者之一.pandas是非常好用的数据预处理工具,pandas下面有两个数据结构,分别为Series和DataFrame,DataFrame之前我在一些实战案例中有用过,下面先对这两个数据结构做介绍. 二.Series Series最简单的一个功能就是对一组数字打上ID,用法为下 可以看到Series会自动把数字打上0~3对应的ID,也可以对ID自定义名称 这样就可以用key-value的形式…
Data analysis - Wikipedia https://en.wikipedia.org/wiki/Data_analysis Data analysis is a process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision…
Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evaluating trading strategies (see part 1 and part 2). These have been my most popular posts, up until I published my article on learning programming langua…
Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习. 如果我的翻译行为侵犯您的版权,请您告知,我将停止对此书的开源翻译. Translation the book of Learning Spark: Lightning-Fast Big Data Analysis is only for spark developer educational purposes. If I violated you…