[抄题]: 往上走台阶 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的. 样例 给出 [5,4,1,2,3],LIS 是 [1,2,3],返回 3给出 [4,2,4,5,3,7],LIS 是 [2,4,5,7],返回 4   [思维问题]: 不知道怎么处理递增:还是坐标型(有小人在里面跳),用i j来进行比较 intialization answer都不止一个点:可以从所有的点开始或结束 [一句话思路]: [输入量]:空: 正…
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Input: [10,9,2,5,3,7,101,18] Output: 4 Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4. Note: There may be more…
最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n).  具体分析参考:http://blog.chinaunix.net/uid-26548237-id-3757779.html 代码: #include <iostream> using namespace std; int LIS_nlogn(int *arr, int len) { int *LIS = new int[len…
前面写了最长公共子序列的问题.然后再加上自身对动态规划的理解,真到简单的DP问题很快就解决了.其实只要理解了动态规划的本质,那么再有针对性的去做这方的题目,思路很快就会有了.不错不错~加油 题目描述:POJ2533 给出一个数列,找出这个数列中最长上升子序列中所包含的个数. 解题思路: DP问题解题的一般方法就是自下而上,即先求解小的问题,然后再根据小的问题来解决大的问题,最后得到解.但是这里还要满足的条件是最优子结构,即最优解包含着其子问题的最优解. 那么我们首先用arr[]数组(从0下标开始…
问题定义: 给定一个长度为N的数组A,找出一个最长的单调递增子序列(不要求连续). 这道题共3种解法. 1. 动态规划 动态规划的核心是状态的定义和状态转移方程.定义lis(i),表示前i个数中以A[i]结尾的最长递增子序列的长度.可以得到以下的状态转移方程: d(i) = max(, d(j) + ), 其中j < i,且A[j] <= A[i] 程序实现: int longestIncreasingSubsequence(vector<int> nums) { if (nums…
转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求以ai为末元素的最长递增子序列时,找到所有序号在L前面且小于ai的元素aj,即j<i且aj<ai.如果这样的元素存在,那么对所有aj,都有一个以aj为末元素的最长递增子序列,设其长度为f(j),把其中最大的f(j)选出来,那么f(i)就等于最大的f(j)加上1,即以ai为末元素的最长递增子序列,等…
什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5}, {1} 其中最长的递增子序列是{2, 4, 5} 问题:对于长度为N的矢量D,如何找到它的最长递增子序列 一个简单的算法 . 找到所有长度为i的子序列; //复杂度为(N!)/(i!)(N-i)! O(exp(N)) . 判断是否其中有一个为递增子序列} 动态规划算法 基本思想:将一个复杂问题…
300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4. 说明: 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可. 你算法的时间复杂度应该为 O(n2) . 进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗? class Solution { public int lengthOfLIS(int[] nu…
题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是4.因为可能会有超过一种的最长上升子序列的组合,因此你只需要输出对应的长度即可. 解题思路 用动态规划思想,考虑用一个数组dp记录到当前数字为止,可能的最长上升子序列长度,注意并不一定是当前子序列的解.这样最后返回dp数组的长度即可.具体以上述数组为例: 首先把10加入到dp中,此时最长上升子序列长…
用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示以第i个数字结尾的最长上升子序列的.每次a把当前数字当作是最后一个序列的最后一个数字,只看这个数字之前的数字,如果比他之前的数字大,那么选择这个数字之后最大上升序列长度+1,memo[i]=memo[j]+1. #include <bits/stdc++.h> using namespace st…