学习策略 软间隔最大化 上一章我们所定义的"线性可分支持向量机"要求训练数据是线性可分的.然而在实际中,训练数据往往包括异常值(outlier),故而常是线性不可分的.这就要求我们要对上一章的算法做出一定的修改,即放宽条件,将原始的硬间隔最大化转换为软间隔最大化. 给定训练集 \[\begin{aligned} D = \{\{\bm{x}^{(1)}, y^{(1)}\}, \{\bm{x}^{(2)}, y^{(2)}\},..., \{\bm{x}^{(m)}, y^{(m)}\…
学习策略 软间隔最大化 上一章我们所定义的"线性可分支持向量机"要求训练数据是线性可分的.然而在实际中,训练数据往往包括异常值(outlier),故而常是线性不可分的.这就要求我们要对上一章的算法做出一定的修改,即放宽条件,将原始的硬间隔最大化转换为软间隔最大化. 给定训练集 \[\begin{aligned} D = \{\{\bm{x}^{(1)}, y^{(1)}\}, \{\bm{x}^{(2)}, y^{(2)}\},..., \{\bm{x}^{(m)}, y^{(m)}\…
模型 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{1} \] 其中\(\bm{a} \in \mathbb{R}^n\)且\(\bm{a} \ne \bm{0} , \bm{x}\in \mathbb{R}^n, b \in \mathbb{R}\).解析地看,超平面是关于\(\bm{x}\)的非平凡线性方程的解空间(因此是一个仿射集,仿射集和凸集…
翻译:Tacey Wong 统计学习: 随着科学实验数据的迅速增长,机器学习成了一种越来越重要的技术.问题从构建一个预测函数将不同的观察数据联系起来,到将观测数据分类,或者从未标记数据中学习到一些结构. 本教程将探索机器学习中统计推理的统计学习的使用:将手中的数据做出结论 Scikit-learn 是一个紧密结合Python科学计算库(Numpy.Scipy.matplotlib),集成经典机器学习算法的Python模块. 一.统计学习:scikit-learn中的设置与评估函数对象 (1)数据…
统计学习:scikit学习中的设置和估计对象 数据集 Scikit学习处理来自以2D数组表示的一个或多个数据集的学习信息.它们可以被理解为多维观察的列表.我们说这些阵列的第一个轴是样本轴,而第二个轴是 特征轴. scikit:iris数据集附带的一个简单示例 >>> >>> from sklearn import datasets >>> iris = datasets.load_iris() >>> data = iris.data…
SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大于1的约束条件,可以对每个样本$(x_i, y_i)$引进一个松弛变量$\xi_i \ge 0$,使函数间隔加上松弛变量大于等于1,, $$y_i (w \cdot x_i + b) \ge 1 - \xi_i$$ 目标函数变为 $$\frac 1 2 {||w||^2} + C \sum_{j=1…
目前在看统计学习导论:基于R应用,觉得这本书非常适合入门,打算把课后习题全部做一遍,记录在此博客中. 第二章习题 1. (a) 当样本量n非常大,预测变量数p很小时,这样容易欠拟合,所以一个光滑度更高的学习模型更好. (b) 当样本量n非常小,预测变量数p很大时,这样容易过拟合,所以一个光滑度更小的学习模型更好. (c) 当预测变量与响应变量之间的关系是非线性时,说明光滑度小的模型会容易欠拟合,所以光滑度高的模型更适合. (d) 在这里,方差是指用一个不同的训练数据集估计f时,估计函数的改变量.…
一. 统计学习概述 统计学习是指一组用于理解数据和建模的工具集.这些工具可分为有监督或无监督.1.监督学习:用于根据一个或多个输入预测或估计输出.常用于商业.医学.天体物理学和公共政策等领域.2.无监督学习:有输入变量,但没有输出变量,可以从这些数据中学习潜在关系和数据结构.以下简单的用3个数据集来说明. 1.工资数据 我们希望了解雇员的年龄.教育和年份对他的工资之间的联系.下图是对这三个因素的一个分析和统计. 左图:工资随着年龄的增长而增加,但在大约60岁之后又下降了.蓝线提供了对该年龄段平均…
Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预处理 我们将在PyTorch中编写模型并使用TorchText帮助我们完成所需的所有预处理.我们还将使用spaCy来协助数据的标记化. # 引入相关库 import torch import torch.nn as nn import torch.optim as optim from torcht…
代码: # -*- coding: utf-8 -*- """ Created on Tue Jul 17 10:13:20 2018 @author: zhen """ from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC import mglearn import matplotlib.pyplot as plt x, y =…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的,对32*32的CIFAR10图片,网络结构做了微调:删除了最后一层最大池化,具体参见网络定义代码,这里采用VGG19,并加入了BN: ''' 创建VGG块 参数分别为输入通道数,输出通道数,卷积层个数,是否做最大池化 ''' def make_vgg_block(in_channel, out_ch…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFAR10,图片是32*32,尺寸远小于227*227,因此对网络结构和参数需做微调: 最后一个max-pool层删除 网络定义代码如下: class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self…
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计”(Maximum Likelihood Estimation, MLE)与“最大后验概率估计”(Maximum A Posteriori Estimation,MAP)的历史可谓源远流长,这两种经典的方法也成为机器学习领域的基础被广泛应用. 有趣的是,这两种方法还牵扯到“频率学派”与“贝叶斯学派”的派别之争,…
接着统计学习中knn算法实验(1)的内容 Problem: Explore the data before classification using summary statistics or visualization Pre-process the data (such as denoising, normalization, feature selection, …) Try other distance metrics or distance-based voting Try other…
例程:classify_halogen_bulbs.hdev 在Halcon中模式匹配最成熟最常用的方式该署支持向量机了,在本例程中展示了使用支持向量机对卤素灯的质量检测方法.通过这个案例,相信大家可以对支持向量机的使用有一个更加清晰的了解.在相当多的检测和识别的应用中,都可以使用相同的方法来解决分类问题. 图1. 卤素灯图像 大致原理: 一.准备阶段:描述样本 1. 准备好两组卤素灯图像样本,好坏的各若干张图像: 2. 对样本图像进行分割,获取卤素灯关键部位区域: 3. 选择合适的对图像的描述…
_________________________________________________________________________________________________ The support-vector mechine is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: inpu…
我们说“训练”支持向量机模型,其实就是确定"最大间隔超平面". 用数学语言来说就是确定一个最优的W.好比训练一个逻辑回归模型的目的是确定最优的W和b. 输入 X,为一个n维向量 输出 y,为-1或1 1.”弱鸡版支持向量机“——硬间隔 线性支持向量机(1962) 我更喜欢叫它 ”弱鸡版支持向量机“,因为它还什么都没有. 判别函数 f(X)  = sign( W*X + b ). 我们要根据训练数据集{(X,y)}来计算出最优的参数W和b. 首先基于训练数据集我们有限制条件:  y(i)…
对于许多科学家.工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架.TensorFlow 1.0于2017年2月发布,可以说,它对用户不太友好. 在过去的几年里,两个主要的深度学习库Keras和Pytorch获得了大量关注,主要是因为它们的使用比较简单. 本文将介绍Keras与Pytorch的4个不同点以及为什么选择其中一个库的原因. Keras Keras本身并不是一个框架,而是一个位于其他深度学习框架之上的高级API.目前它支持TensorFlow.Theano和CNTK.…
[问题描述] 从1− N中找一些数乘起来使得答案是一个完全平方数,求这个完全平方数最大可能是多少. [输入格式] 第一行一个数字N. [输出格式] 一行,一个整数代表答案对100000007取模之后的答案. [样例输入] 7 [样例输出] 144 [样例解释] 但是塔外面有东西. [数据规模与约定] 对于20%的数据,1<=N<=100. 对于50%的数据,1<=N<=5000. 对于70%的数据,1<=N<=10^5. 对于100%的数据,1<=N<=5*…
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模型,同时也简化了这些模型的产品离子化. 支持TensorFlow.PyTorch.TorchScript和Keras等深度学习框架. 使用一个API从任何支持的框架运行模型,运行TensorFlow模型看起来就像运行PyTorch模型. x = np.array([1, 2, 3, 4]) y =…
1. 模型 1.1 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{1} \] 其中\(\bm{a} \in \mathbb{R}^n\)且\(\bm{a} \ne \bm{0} , \bm{x}\in \mathbb{R}^n, b \in \mathbb{R}\).解析地看,超平面是关于\(\bm{x}\)的非平凡线性方程的解空间(因此是一个仿射集…
1. Logistic 分布和对率回归 监督学习的模型可以是概率模型或非概率模型,由条件概率分布\(P(Y|\bm{X})\)或决 策函数(decision function)\(Y=f(\bm{X})\)表示,随具体学习方法而定.对具体的输入\(\bm{x}\)进行相应的输出预测并得到某个结果时,写作\(P(y|\bm{x})\)或\(y=f(\bm{x})\). 我们这里的 Logistic 分类模型是概率模型,模型\(P(Y|\bm{X})\)表示给定随机向量\(\bm{X}\)下,分类标…
1 SVM 基本概念 本章节主要从文字层面来概括性理解 SVM. 支持向量机(support vector machine,简SVM)是二类分类模型. 在机器学习中,它在分类与回归分析中分析数据的监督式学习模型及相关的学习算法:在给定的一组训练实例中,每个训练实例会被标记其属性类别(两个类别中的一个),是非概率的二元线性分类器. SVM模型是将采用尽可能宽的.明显的间隔将实例分开,使得实例分属不同的空间:然后将新的实例映射到某一空间,基于新的实例所属空间来预测其类别. SVM 除了可进行线性分类…
全文引用自<统计学习方法>(李航) K近邻算法(k-nearest neighbor, KNN) 是一种非常简单直观的基本分类和回归方法,于1968年由Cover和Hart提出.在本文中,主要介绍了分类方法.其输入为特征空间中的点,输出为给定实例的类别,可以选择多个类输出.K近邻算法通过给定的训练集对特征空间进行分类,分类时,对于输入的实例,通过判断其最近的k个实例的类别,选择多数类别为本实例的最终分类.因此,k近邻算法本质上并不具有显示的学习过程. 本篇文章通过介绍K近邻算法的k值选择.距离…
1. 线性回归 1.1 线性模型 当输入包含d个特征,预测结果表示为: 记x为样本的特征向量,w为权重向量,上式可表示为: 对于含有n个样本的数据集,可用X来表示n个样本的特征集合,其中行代表样本,列代表特征,那么预测值可用矩阵乘法表示为: 给定训练数据特征X和对应的已知标签y,线性回归的⽬标是找到⼀组权重向量w和偏置b:当给定从X的同分布中取样的新样本特征时,这组权重向量和偏置能够使得新样本预测标签的误差尽可能小. 1.2 损失函数(loss function) 损失函数又称代价函数(cost…
感知机是古老的统计学习方法,主要应用于二类线性可分数据,策略是在给定的超平面上对误差点进行纠正,从而保证所有的点都是正确可分的. 用到的方法是随机梯度下降法,由于是线性可分的,可保证最终在有限步内收敛.具体可参考李航的<统计学习方法> #include<iostream> #include<algorithm> #include<vector> #include<fstream> using namespace std; typedef vect…
周志华-机器学习 pdf,下载地址: https://u12230716.pipipan.com/fs/12230716-239561959 统计学习方法-李航,  下载地址: https://u12230716.pipipan.com/fs/12230716-336803118 人工智能-李开复,     下载地址:       https://u12230716.pipipan.com/fs/12230716-336902476 吴恩达深度学习笔记,下载地址:     https://u12…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面几篇文章介绍了MINIST,对这种简单图片的识别,LeNet-5可以达到99%的识别率. CIFAR10是另一个著名的深度学习图像分类识别数据集,比MINIST更复杂,而且是RGB彩色图片. 看看较简单的LeNet-5可以达到多少准确率.网络结构基本和前面MINIST代码中的差不多,主要是输入图片的通道数不同,代码如下: # -*- coding:utf-8 -*- u"""…
目前电脑配置:Ubuntu 16.04 + GTX1080显卡 配置深度学习环境,利用清华源安装一个miniconda环境是非常好的选择.尤其是今天发现conda install -c menpo opencv3 一句命令就可以顺畅的安装上opencv,之前自己装的时候也遇到了很多错误.conda 安装 Tensorflow 和 Pytorch两种框架也是非常方便的,对于不擅长源码编译的我是最佳选择没错了. 所以大致流程就是:安装显卡驱动——安装CUDA 8.0——安装cuDNN——安装mini…
模型选择:选择估计量及其参数 得分和交叉验证的分数 如我们所看到的,每个估计者都会公开一种score可以判断新数据的拟合质量(或预测)的方法.越大越好. >>> >>> from sklearn import datasets, svm >>> digits = datasets.load_digits() >>> X_digits = digits.data >>> y_digits = digits.target…