条件最短路径问题,指带有约束条件.限制条件的最短路径问题.例如: 顶点约束,包括必经点或禁止点的限制: 边的约束,包括必经路段.禁行路段和单向路段:无权路径长度的限制,如要求经过几步或不超过几步到达终点. 本文基于 NetworkX 工具包,建立了一个遍历简单路径.判断约束条件的通用框架. 数模竞赛真题案例,详解禁止点.禁止边.必经点.必经边的约束条件处理,进而可以扩展到任何约束条件. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 带有条件约束的最短路径…
流在生活中十分常见,例如交通系统中的人流.车流.物流,供水管网中的水流,金融系统中的现金流,网络中的信息流.网络流优化问题是基本的网络优化问题,应用非常广泛. 网络流优化问题最重要的指标是边的成本和容量限制,既要考虑成本最低,又要满足容量限制,由此产生了网络最大流问题.最小费用流问题.最小费用最大流问题. 本文基于 NetworkX 工具包,通过例程详细介绍网络最大流问题.最小费用流问题.最小费用最大流问题的建模和编程. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛…
最小生成树(MST)是图论中的基本问题,具有广泛的实际应用,在数学建模中也经常出现. 路线设计.道路规划.官网布局.公交路线.网络设计,都可以转化为最小生成树问题,如要求总线路长度最短.材料最少.成本最低.耗时最小. 最小生成树的典型算法有普里姆算法(Prim算法)和克鲁斯卡算法(Kruskal算法). 本文基于 NetworkX 工具包,通过例程详细介绍最小生成树问题的求解. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 最小生成树 1.1 生成树 树…
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 0. 前言:新冠疫情成了数模竞赛的背景帝 新冠疫情爆发以来,不仅严重影响到全球的政治和经济,也深刻和全面地影响着社会和生活的方方面面,甚至已经成为数学建模竞赛的背景帝. 传染病模型本来就是数学建模课程中的常见问题和模型.随着疫情的影响越来越严重.广泛和持久,不仅疫情传播.疫…
Python小白的数学建模课 A1-2021年数维杯C题(运动会优化比赛模式探索)探讨. 运动会优化比赛模式问题,是公平分配问题 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 2021第六届数维杯大学生数学建模 赛题已于5月27日公布,C题是"运动会优化比赛模式探索".本文对赛题进行一些分析讨论.由于竞赛时间为 2021年5月27-30日20:00,目前尚处于竞赛中,本文仅做初步分析. 1. 赛题内容(运动会优化比赛模式探索) 在大学的运动会中,由于…
线性规划是很多数模培训讲的第一个算法,算法很简单,思想很深刻. 要通过线性规划问题,理解如何学习数学建模.如何选择编程算法. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 求解方法.算法和编程方案 线性规划 (Linear Programming,LP) 是很多数模培训讲的第一个算法,算法很简单,思想很深刻. 线性规划问题是中学数学的内容,鸡兔同笼就是一个线性规划问题.数学规划的题目在高考中也经常出现,有直接给出线性约束条件求线性目标函数极值,有间接给出…
整数规划与线性规划的差别只是变量的整数约束. 问题区别一点点,难度相差千万里. 选择简单通用的编程方案,让求解器去处理吧. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 从线性规划到整数规划 1.1 为什么会有整数规划? 线性规划问题的最优解可能是分数或小数.整数规划是指变量的取值只能是整数的规划. 这在实际问题中很常见,例如车间人数.设备台数.行驶次数,这些变量显然必须取整数解. 整数规划并不一定是线性规划问题的变量取整限制,对于二次规划.非线性规划问…
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要求 方法 2020A 炉温曲线 建立温度模型,计算炉温曲线,确定最大速度 根据传热学方程建立温度分布机理模型:建立单目标优化模型 微分方程 单目标优化 2019A 高压油管的压力控制 确定不同条件下的控制方案 根据力学方程建立压力变化机理方程:建立单目标优化模型 微分方程 单目标优化 2018A 高…
0-1 规划不仅是数模竞赛中的常见题型,也具有重要的现实意义. 双十一促销中网购平台要求二选一,就是互斥的决策问题,可以用 0-1规划建模. 小白学习 0-1 规划,首先要学会识别 0-1规划,学习将问题转化为数学模型. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 什么是 0-1 规划? 0-1 整数规划是一类特殊的整数规划,变量的取值只能是 0 或 1. 0-1 变量可以描述开关.取舍.有无等逻辑关系.顺序关系,可以处理背包问题.指派问题.选址问题…
Python 实例介绍固定费用问题的建模与求解. 学习 PuLP工具包中处理复杂问题的快捷使用方式. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 前文讲到几种典型的 0-1 规划问题,给出了 PuLP 求解的案例.由于 0-1 规划问题种类很多,又是数模竞赛热点,有必要再结合几个实例进行介绍. 1. 固定费用问题案例解析 1.1 固定费用问题(Fixed cost problem) 固定费用问题,是指求解生产成本最小问题时,总成本包括固定成本和变动成本,而选…