R语言因子排序】的更多相关文章

画图的时候,排序是个很重要的技巧,比如有时候会看下基因组每条染色体上的SNP的标记数量,这个时候直接做条形图是一种比较直观的方法,下面我们结合实际例子来看下: 在R环境下之际构建一个数据框,一列染色体名称,一列统计数据. 1 chr<-paste("chr",c(1:18,"X","Y"),sep="") 2 set.seed(2) 3 num<-runif(20,100,5000) 4 df<-data.f…
R语言因子 因子是它们用于将数据进行分类并将其存储为级别的数据对象.它们可以同时存储字符串和整数.它们在具有唯一值的有限数目的列是有用的. 例如,"male, "Female" 和 True, False 等. 它们在统计建模的数据分析非常有用. 使用 factor() 函数通过采取向量作为输入来创建因子. 示例 # Create a vector as input. data <- c("East","West","E…
#sort:对向量进行排序;返回排好序的内容 #order:返回排好序的内容的下标/多个排序标准 > x <- data.frame(v1=1:5,v2=c(10,7,9,6,8),v3=11:15,v4=c(1,1,2,2,1)) > sort(x$v2) [1] 6 7 8 9 10 > sort(x$v2,decreasing = TRUE) [1] 10 9 8 7 6 > order(x$v2) [1] 4 2 5 3 1 > x[order(x$v2),]…
Sort:dd <- data.frame(b = factor(c("Hi","Med","Hi","Low"), levels = c("Low","Med","Hi"), ordered = TRUE), x = c("A","D","A","C"), y = c(8,3,9,…
R语言中排序有几个基本函数:sort().rank().order().arrange() 一.总结 sort()函数是对向量进行从小到大的排序 rank()函数返回的是对向量中每个数值对应的秩 order()函数返回的值表示位置,依次对应的是向量的最小值.次小值.第三小值……最大值等(位置索引) arrange()函数(需加载dplyr包)针对数据框,返回基于某列排序后的数据框,方便多重依据排序 二.具体用法 1.sort data ,,,,,) sort(data) # sort(data,…
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),其中data必须是同一类型的数据,dim是各维的长度组成的向量. 1.产生一个三维和四维数组. 例1:xx <- array(1:24, c(3, 4, 2)) #一个三维数组 例2:yy <- array(1:36, c(2, 3, 3, 2)) #一个四维数组   2.dim()函数可…
R语言中的因子就是factor,用来表示分类变量(categorical variables),这类变量不能用来计算而只能用来分类或者计数. 可以排序的因子称为有序因子(ordered factor). factor() 用来生成因子数据对象,语法是: factor(data, levels, labels, ...) 其中data是数据,levels是因子的级别向量,labels是因子的标签向量. 以我的10个月的fitbit数据为例,创建一个因子 fitbit <- read.csv("…
1.数据准备 # 测试数组 vector = c(,,,,,,,,,,,,,,) vector ## [] 2.R语言内置排序函数 在R中和排序相关的函数主要有三个:sort(),rank(),order(). sort(x)是对向量x进行排序,返回值排序后的数值向量; rank()是求秩的函数,它的返回值是这个向量中对应元素的“排名”; order()的返回值是对应“排名”的元素所在向量中的位置. sort(vector) ## [] order(vector) ## [] rank(vect…
总结: 1.sort是直接对向量排序,返回原数值: 2.order先对数值排序,然后返回排序后各数值的索引: 3.rank返回原数据各项排名,有并列的情况: 4.arrange是dplyr包中的,可对数据框以列的形式进行因子排序: 5.reorder用在绘图中,比如ggplot中绘条形图,可使x轴按y轴数值大小排序:比如横轴为class,纵轴为hwy,可写为:aes(x=reorder(class,hwy), y=hwy)…
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…