目录 摘要部分: I. Introduction 介绍 II. Background 背景 A. Collision Avoidance with DRL B. Characterization of Social Norms III. Approach 方法 A. Inducing Social Norms 前言: 摘要部分: For robotic vehicles to navigate safely and efficiently in pedestrian-rich environme…
Hierarchical Object Detection with Deep Reinforcement Learning NIPS 2016 WorkShop  Paper : https://arxiv.org/pdf/1611.03718v1.pdf Project Page : https://github.com/imatge-upc/detection-2016-nipsws  摘要: 我们提出一种基于深度强化学习的等级物体检测方法 (Hierarchical Object  De…
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-st…
Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方法,利用强化学习的方法,直接从高维的感知输入中学习控制策略.模型是一个卷积神经网络,利用 Q-learning的一个变种来进行训练,输入是原始像素,输出是预测将来的奖励的 value function.将此方法应用到 Atari 2600 games 上来,进行测试,发现在所有游戏中都比之前的方法有效,甚至在…
Human-level control through deep reinforcement learning Nature 2015 Google DeepMind Abstract RL 理论 在动物行为上,深入到心理和神经科学的角度,关于在一个环境中如何使得 agent 优化他们的控制,提供了一个正式的规范.为了利用RL成功的接近现实世界的复杂度的环境中,然而,agents 遇到了一个难题:他们必须从高维感知输入中得到环境的有效表示,然后利用这些来将过去的经验应用到新的场景中去.显著地,人…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53  这篇文章的 Motivation 来自于 MDNet: 本文所提出的 framework 为:…
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪,算是单目标跟踪中比较早的应用强化学习算法的一个工作.  在基于深度学习的方法中,想学习一个较好的 robust spatial and temporal representation for continuous video data 是非常困难的.  尽管最近的 CNN based tracke…
Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state value function 和 the state-dependent action advantage function. 这个设计的主要特色在于 generalize learning across actions w…
Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特定条件下的动作值.实际上,之前是不知道是否这样的过高估计是 common的,是否对性能有害,以及是否能从主体上进行组织.本文就回答了上述的问题,特别的,本文指出最近的 DQN 算法,的确存在在玩 Atari 2600 时会 suffer from substantial overestimation…