这个题的思路还是比较巧妙的. 首先,我们发现操作只有删除和询问两种,而删除并不好维护连通性和割边之类的信息. 所以我们不妨像WC2006水管局长那样,将询问离线,然后把操作转化成加边和询问. 然后,我们会发现,若存在一条边\(x->y\),那么原本x到y的所有割边,都会变成非割边. 那意味着什么呢? 似乎加边操作,可以直接转化成区间修改. 那我们就可以首先对不涉及删除边,建一个生成树.(题目保证一定合法) 那么对于一棵树,所有的边都是割边,所以一开始所有的边的边权都是1(这里为了修改方便,我们将…
传送门 woc这该死的码农题…… 把每一条边转化为它连接的两点中深度较深的那一个,然后就可以用树剖+线段树对路径进行修改了 然后顺便注意在上面这种转化之后,树剖的时候不能搞$LCA$ 然后是几个注意点 1.线段树记两个标记,一个区间覆盖,一个区间加和 2.区间覆盖的标记更新后要把区间加和的标记删除,因为覆盖后之前的加和相当于都废了 3.因为上面那个原因,pushdown的时候先下传区间覆盖标记再下传区间加和标记 4.标记更新的时候记得把答案也一起更新 5.数组开大一点!!! //minamoto…
BZOJ_2238_Mst_树剖+线段树 Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影响,即被删掉的边在下一条询问中依然存在) Input 第一行两个正整数N,M(N<=50000,M<=100000)表示原图的顶点数和边数. 下面M行,每行三个整数X,Y,W描述了图的一条边(X,Y),其边权为W(W<=10000).保证两点之间至多只有一条边. 接着一行一个正整数Q,表示询…
BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下 两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均无标记,而且对于某个 结点,可以打多次标记.)2. 询问操作:询问某个结点最近的一个打了标记的祖先(这个结点本身也算自己的祖 先)你能帮帮他吗? Input 输入第一行两个正整数N和Q分别表示节点个数和操作次数…
BZOJ_2157_旅游_树剖+线段树 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有一条路径.换句话说, T 城中只有N − 1 座桥.Ray 发现,有些桥上可以看到美丽的景色,让人心情愉悦,但有些桥狭窄泥泞,令人烦躁.于是,他给每座桥定义一个愉悦度w,也就是说,Ray 经过这座桥会增加w 的愉悦度,这或许是正的也可能是负的.有时,R…
[BZOJ5210]最大连通子块和 Description 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树所有子连通块的点权和中的最大值 (本题中子连通块包括空连通块,点权和为0). Input 第一行两个整数n.m,表示树的点数以及操作的数目. 第二行n个整数,第i个整数w_i表示第i个点的点权. 接下来的n-1行,每行两个整数x.y,表示x和y之间有…
\(\%\%\% Fading\) 此题是他第一道黑题(我的第一道黑题是蒲公英) 一直不敢开,后来发现是差分一下,将询问离线,树剖+线段树维护即可 \(Code\ Below:\) #include <bits/stdc++.h> #define pii pair<int,int> #define mp make_pair #define F first #define S second #define lson (rt<<1) #define rson (rt<…
题意 我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径. 给定一棵由 \(n\) 个结点构成的树.你需要用 \(m\) 种不同的颜色为这棵树的树边染色,在这 \(m\) 种颜色中,第 \(i\) 种颜色有两条备选路径 \((a_i, b_i)\) 与 \((c_i, d_i)\),你的任务是判断是否存在一种合法的染色方案,使得每种颜色 \(i\) 所对应的两条备选路径中都有至少一条满足: 该路径上的所有树边的颜色均为颜色 \(i\).若存在,输出…
题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y\)到根节点的路径和就是了 那么\(k\neq 1\)的情况该怎么办呢?我们来考虑一下令\(1\)到\(i\)的路径上每个节点权值加\(1\)的本质,相当于是令每个节点\(u\)增加\({dep_u}^k-{dep_{fa_u}}^k\),那么用树剖+线段树维护就行了 //minamoto #inc…
传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力,对每一个信仰建一棵线段树 然而必然会MLE 于是我们只能动态开点 说一下我自己的理解吧,动态开点就是把那些建树过程中没有用的节点删去,以此来节省空间 比如当$sum[p]=0$时,直接删去点$p$ 具体实现还是参考一下代码吧 // luogu-judger-enable-o2 //minamoto…
题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可以花费 $c$ 单位时间到达 $y_1$ 到 $y_2$ 简单路径上的任意一点.求从一个起点 $k$ 到其余所有点的最短路. 题解1:树剖+线段树优化建图 线段树优化建图大家肯定都会,然后套到树剖上的话,就想象一下 每条重链对应线段树上一段区间 即可,甚至不用为此更改写法. 这里介绍了 $O(n\t…
You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one…
传送门 解题思路 货车所走的路径一定是最大生成树上的路径,所以先跑一个最大生成树,之后就是求一条路径上的最小值,用树剖+线段树,注意图可能不连通.将边权下放到点权上,但x,y路径上的lca的答案不能算,因为他的点权来自上面的路径. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; const int inf = 0x…
[描述] 给你一个图,一共有 N 个点,2*N-2 条有向边. 边目录按两部分给出 1. 开始的 n-1 条边描述了一颗以 1 号点为根的生成树,即每个点都可以由 1 号点 到达. 2. 接下来的 N-1 条边,一定是从 i 到 1(2<=i<=N)的有向边,保证每个点都能到 1 有 q 次询问: 1 x w :表示将第 x 条边的边权修改为 w 2 u v :询问 u 到 v 的最短距离 [输入格式] 第一行是 2 个整数 N,Q,表示一共 N 个点 Q 次询问 接下来是 N-1 行,每行…
传送门 LCT秒天秒地 树剖比较裸的题了 用线段树记录一下区间的最左边的黑点的编号(因为同一条链上肯定是最左边的深度最小,到根节点距离最近) 然后记得树剖的时候肯定是越后面的答案越优,因为深度越浅 //minamoto #include<bits/stdc++.h> using namespace std; #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)…
洛谷题目传送门 \(O(n)\)的正解算法对我这个小蒟蒻真的还有点思维难度.洛谷题解里都讲得很好. 考试的时候一看到300000就直接去想各种带log的做法了,反正不怕T...... 我永远只会有最直观的思路(最差的程序效率) 题目相当于每次让我们找区间\([1,las-1]\)中上数第一个比当前盘子半径小的位置(las为上一次盘子掉到的位置)于是用线段树无脑搞一下,维护区间最小值,每次找这个位置,能往左跳就往左,不能的话再往右,当然如果超过了las-1就不用找了,直接放在las上面(相当于la…
LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\)的.(这就有\(70\)分?) 因为最开始的图是连通的,可以先求一个\(dis[i]\)表示\(1\)到\(i\)的异或和.每次加边会形成环,就是在线性基中插入一个元素. 因为有撤销,所以线段树分治就好了.线段树上每个节点开一个线性基.同一时刻只需要\(\log\)个线性基的空间. 复杂度\(O(\…
题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的最长长度 $j=2$ 表示 $A[1]$ $j=3$ 表示 $A[2]$ 且是单调递减 $j=4$ 表示 $A[2]$ 且是单调递增 (为了方便,我们令 $seq[x]$ 表示当上文中的 $j=x$ 时表示哪个序列) 那么有转移方程: $dp[i][1]=\max\limits_{1\le j<i,…
洛谷P4145:https://www.luogu.org/problemnew/show/P4145 思路 这道题的重点在于sqrt(1)=1 一个限制条件 与正常线段树不同的是区间修改为开方 那么我们用一个数组记录每个区间的最大值 只有当这个区间的最大值大于1时才需要开方 因此 当我们更新到叶子节点时把每个区间的最大值和sum值开方即可 注意题目中说l可能大于r 要交换 代码 #include<iostream> #include<cmath> using namespace…
题目链接 洛谷P4588 题解 用线段树维护即可 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt) #define REP(i,n) for (int i = 1;…
题目: 洛谷 3822 分析: 直接按题意模拟,完了. 将每次加 / 减拆成不超过 \(32\) 个对单独一位的加 / 减. 考虑给一个二进制位(下称「当前位」)加 \(1\) 时,如果这一位本来就是 \(0\) ,那么直接变成 \(1\) .否则要考虑进位:向左(以后默认从右向左为低位至高位,与书写顺序相同)找到第一个为 \(0\) 的位 \(p\) ,将其变成 \(1\) ,并把从 \(p\) 到当前位中间所有的 \(1\) 变成 \(0\) . 减法是类似的.退位操作就是向左找到第一个 \…
洛谷P4556 雨天的尾巴 题目链接 题解: 因为一个点可能存放多种物品,直接开二维数组进行统计时间.空间复杂度都不能承受.因为每一个点所拥有的物品只与其子树中的点有关,所以可以考虑对每一个点来建立一颗权值线段树来维护多种物品以及其数量,然后最后在回溯时合并,这样就可以得到我们所需要的信息了. 因为题目中要求的是哪一种物品,所以我们可以顺带维护一下位置信息,就不用到时候每次去query了. 注意一下,就是当一个点的sum为0时,其pos应该为置为0. 详见代码吧: #include <bits/…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2402 题解 看上去很像分数规划的模型.于是就二分吧.令 \[ \begin{align*}\frac{y_i+q_j}{x_i+p_j} &\geq mid\\y_i+q_j &\geq mid(x_i+p_j)\\(y_i - mid\cdot x_i) + (q_j - mid\cdot p_j) & \geq 0\end{align*} \] 这样 \(x, y\) 和…
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一个点被覆盖次数大于m 我们将覆盖这个点的区间升序排序: 则所选区间一定是排序后序列中的一个长度为m+1的连续子序列 证明很容易,取更远的点会使最大值更大从而使差值最大 我们可以从这个结论出发,再观察该题所求,符合尺取法的思路 我们考虑用尺取法求解 没了解尺取法的读者可以去自行了解一下 如何求解呢?…
题面 传送门 题解 如果我们把路径拆成两段,那么这个路径加可以看成是一个一次函数 具体来说,设\(dis_u\)表示节点\(u\)到根节点的距离,那么\((x,lca)\)这条路径上每个节点的权值就会加上\(-dis_ua+dis_xa+b\),而\((lca,y)\)这条路径上每个节点就会加上\(dis_ua+a(dis_x+2\times dis_{lca})+b\) 区间加一次函数并维护最值,就是李超线段树啦~~~~ 我们把它给树剖了,那么同一条重链里\(dis\)肯定是递增的,我们就可以…
题面 首先感谢这篇题解,是思路来源 看到等差数列,就会想到差分,又有区间加,很容易想到线段树维护差分.再注意点细节,\(A\)操作完美解决 然后就是爆炸恶心的\(B\)操作,之前看一堆题解的解释都不怎么明白,就自己脑补+看上面那篇题解乱搞出了个相对合理点的解释-- 用\(0/1/2/3\)分别表示一个差分区间统计答案时,是否跨越原区间左右端点.\(s[0/1/2/3]\)分别表示每个状态的最少可以划分出来的等差数列个数. 合并方式如下: /*定义差分b[i]=a[i+1]-a[i] 假设要查询区…
---恢复内容开始--- 这是很好的一道题 题目描述: 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口. 现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: 队列 [1 3 -1 -3 5 3 6 7] 窗口大小为3. 则如下图所示: 输入输出格式:输入格式: 输入一共有两行,第一行为n,k. 第二行为n个数(<INT_MAX). 输出格式: 输出共两行,第一行为每次窗口滑动的最小值 输入样例: - - 输出样例: - - - -…
正解:线段树 解题报告: 传送门! 通过这题我get了一个神奇的,叫,线段树五问的东西hhhh 听起来有点中二但感觉真正做题的时候还是比较有用的,,,?感觉会让条理清晰很多呢,所以放一下QwQ →每个区间需要记录哪些值 →需要哪些标记 →如何叠加标记 →如何对区间进行整体修改 →如何合并区间 然后感觉按照这个思路想题挺好,写题解就jio得太僵硬了,,,思路不连贯,所以就还是不按照一问一答的方式理思路了QAQ 就直接考虑怎么解决两个修改操作和一个查询操作趴 有一定思维难度的应该在查询操作,先说下趴…
正解:线段树合并 解题报告: 传送门! 这题也是有很多解法,eg:splay,treap,... 然而我都不会我会学的QAQ! 反正今天就只讲下线段树合并怎么做QAQ 首先看到这样子的说第k重要的是什么,然后又不是问某个区间内,那就肯定是权值线段树做嘛 然后考虑到连桥,那显然就是并茶几维护连通性,然后如果不在一个块的连起来了就线段树合并一下就好了嘛 然后就麻油辣!overr! 大概就这些趴,细节什么的瞎扯一点晚上写QAQ #include<bits/stdc++.h> using namesp…
正解:莫队/线段树+扫描线 解题报告: 传送门! 似乎是有两种方法的,,,所以分别港下好了QAQ 第一种,莫队 看到这种询问很多区间之类的就会自然而然地想到莫队趴?然后仔细思考一下,发现复杂度似乎是欧克的,而且好像也是能做的,那就试着做下呗 首先考虑到怎么从[l,r]转移到[l,r+1],可以想到这个之间的增量=就是区间内最小值之和,于是用个st表搞rmq就好,这里具体港下QwQ 首先如果已经求出来了[l,r]内部的最小值的位置pos,这里不过多阐述了rmq就成了 那么分情况讨论下咯 如果a[r…