【Keras】神经网络的搭建】的更多相关文章

Keras神经网络集成技术 create_keras_neuropod 将Keras模型打包为神经网络集成包.目前,上文已经支持TensorFlow后端. create_keras_neuropod( neuropod_path, model_name, sess, model, node_name_mapping = None, input_spec = None, output_spec = None, input_tensor_device = None, default_input_te…
python实现一个简单三层神经网络的搭建(有代码) 废话不多说了,直接步入正题,一个完整的神经网络一般由三层构成:输入层,隐藏层(可以有多层)和输出层.本文所构建的神经网络隐藏层只有一层.一个神经网络主要由三部分构成(代码结构上):初始化,训练,和预测.首先我们先来初始化这个神经网络吧! 1.初始化 我们所要初始化的内容包括:神经网络每层上的神经元个数(这个是根据实际问题输入输出而得到的,我们将它设置为一个可自定义量). 不同层间数据互相传送的权重值. 激活函数(模拟自然界的神经元,刺激信号需…
今天碰到有朋友问道怎么在windows下安装keras,正好我刚完成搭建,总结下过程,也算是一个教程吧,给有需要的朋友. 步骤一:安装python. 这一步没啥好说的,下载相应的python安装即可,版本2.7,3.4,3.5都可以,只是装了什么版本,后续的包都需要对应的版本.我亲测3.5和3.4.这里以3.4版为例吧. 装好后腰把python的路径加入path里面,包括scripts和libs 步骤二:安装mingw. 去mingw的官网下载安装文件并安装,建议安装到d盘根目录. 安装完成后选…
Dense层的使用方法 参考:https://blog.csdn.net/qq_34840129/article/details/86319446 keras.layers.core.Dense( units, #代表该层的输出维度 activation=None, #激活函数.但是默认 liner use_bias=True, #是否使用b kernel_initializer='glorot_uniform', #初始化w权重,keras/initializers.py bias_initi…
http://blog.csdn.net/jerr__y/article/details/53695567 前言:本文主要介绍如何在 ubuntu 系统中配置 GPU 版本的 tensorflow 环境.主要包括: - cuda 安装 - cudnn 安装 - tensorflow 安装 - keras 安装 其中,cuda 安装这部分是最重要的,cuda 安装好了以后,不管是 tensorflow 还是其他的深度学习框架都可以轻松地进行配置. 我的环境: Ubuntu14.04 + TITAN…
keras构造神经网络,非常之方便!以后就它了.本文给出了三个例子,都是普通的神经网络 例一.离散输出,单标签.多分类 例二.图像识别,单标签.多分类.没有用到卷积神经网络(CNN) 例三.时序预测,单标签.多分类.(LSTM) 说明 keras对于神经网络给出的流程图,非常容易理解. 图片来源:https://www.jianshu.com/p/6c08f4ceab4c [重点]训练神经网络围绕以下对象:  1. 层,用于合并成网络(或模型)  2. 输入数据和相应的目标  3. 损失函数, …
上次用Matlab写过一个识别Mnist的神经网络,地址在:https://www.cnblogs.com/tiandsp/p/9042908.html 这次又用Keras做了一个差不多的,毕竟,现在最流行的项目都是Python做的,我也跟一下潮流:) 数据是从本地解析好的图像和标签载入的. 神经网络有两个隐含层,都有512个节点. import numpy as np from keras.preprocessing import image from keras.models import…
先吐槽一下这个基于theano的keras有多难装,反正我是在windows下折腾到不行(需要64bit,vs c++2015),所以自己装了一个双系统.这才感到linux系统的强大之初,难怪大公司都是用这个做开发,妹的,谁用谁知道啊!!!!  先来介绍一下这个框架:我们都知道深度的神经网络,python一开始有theano这个框架用来写神经网络,不过后来我们发现keras这个比theano更加容易构建,很适合初学者.×..×  以下是对应的英文网站:http://keras.io/#insta…
MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件是二进制内容. train-images-idx3-ubyte.gz:  training set images     图片样本,用来训练模型 train-labels-idx1-ubyte.gz:  training set labels     图片样本对应的数字标签 t10k-images-…
1. demo 地址:http://www.huchengchun.com:8127/porn_classification 接口说明: 1. http://www.huchengchun.com:8127/porn_classification 提供了一个简易的网页工具,用户可以上传若干张图片,服务端会传回每一张图片是否是色情图片的判定,结果的形式是json格式.截图如下: 返回结果的说明: 返回结果整体是一个json,key是加上时间戳后缀的上传图片名称,value是上传图片的色情的判定,其…