论文地址:https://ieeexploreieee.fenshishang.com/abstract/document/9142362 神经网络支持的回声.混响和噪声联合多通道降噪 摘要 我们考虑同时降低回声.混响和噪声的问题.在真实场景中,这些失真源可能同时出现,减少它们意味着组合相应的失真特定滤波器.当这些过滤器互相接触时,它们必须被联合优化.我们建议使用多通道高斯建模框架对线性回声消除和去混响后的目标和剩余信号进行建模,并通过神经网络联合表示它们的频谱.我们开发了一个迭代的块坐标上升算…
论文地址:https://ieeexplore.ieee.org/abstract/document/9357975/ 基于半盲源分离的非线性回声消除 摘要: 当使用非线性自适应滤波器时,数值模型与实际非线性模型之间的不匹配是非线性声回声消除(NAEC)的一个挑战.为了解决这一问题,我们提出了一种基于半盲源分离(SBSS)的有效方法,该方法对无记忆非线性进行基泛展开,然后将未知的非线性展开系数合并到回声路径中.将远端输入信号的所有基函数视为已知的等效参考信号,推导了一种基于约束比例自然梯度策略的…
论文地址:https://arxiv.53yu.com/abs/2104.04325 联合在线多通道声学回声消除.语音去混响和声源分离 摘要: 本文提出了一种联合声源分离算法,可同时减少声学回声.混响和干扰源.通过最大化相对于其他源的独立性,将目标语音从混合中分离出来.结果表明,分离过程可以分解为级联的子过程,分别与声学回声消除.语音去混响和源分离相关,所有这些都使用基于辅助函数的独立分量/矢量分析技术及其求解顺序来求解是可交换的.级联解决方案不仅导致较低的计算复杂度,而且比普通联合算法具有更好…
论文地址:https://graz.pure.elsevier.com/en/publications/acoustic-echo-cancellation-with-cross-domain-learning 具有跨域学习的声学回声消除 摘要: 本文提出了跨域回声控制器(CDEC),提交给 Interspeech 2021 AEC-Challenge.该算法由三个构建块组成:(i) 时延补偿 (TDC) 模块,(ii) 基于频域块的声学回声消除器 (AEC),以及 (iii) 时域神经网络 (…
论文地址:https://ieeexplore.ieee.org/abstract/document/9413510 基于双信号变换LSTM网络的回声消除 摘要 本文将双信号变换LSTM网络(DTLN)应用于实时声学回声消除(AEC)任务中.DTLN结合了短时傅里叶变换和堆叠网络方法中的学习特征表示,这使得在时频和时域(也包括相位信息)中能够进行鲁棒的信息处理.该模型仅在真实和合成回声场景下训练60小时.训练设置包括多语言语音.数据增强.附加噪音和混响,以创建一个可以很好地适用于各种现实环境的模…
论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3367/attachments/779/817/Thu-1-10-6.pdf 利用循环神经网络抑制非线性残差回声 摘要 免提通信设备的声学前端会对扬声器和麦克风之间的线性回声路径带来各种失真.虽然放大器可能会引入一个无记忆的非线性,但从扬声器通过设备外壳传递到麦克风的机械振动会引起记忆的非线性,这很难弥补.这些失真极大地限制了线性AEC算法的性能.虽然针对个别用例…
论文地址:https://ieeexplore.ieee.org/abstract/document/9414462 ICASSP 2021声学回声消除挑战:结合时间对准的自适应回声消除和基于深度学习的残余回声加噪声抑制 摘要: 本文描述了一种用于ICASSP 2021年声学回声消除挑战赛的三级声学回声消除和抑制框架.第一阶段采用分块频域自适应滤波,在不引入近端语音失真的情况下消除线性回声分量,并预先补偿远端参考信号与麦克风信号之间的时延.在第二阶段,提出了一种结合门控循环单元的深复杂U-Net…
论文地址:https://ieeexploreieee.53yu.com/abstract/document/9414715 Netshell 中的 AEC:关于 FCRN 声学回声消除的目标和拓扑选择 摘要: 声学回声消除(AEC)算法在信号处理中具有长期稳定的作用,其方法可以改善诸如汽车免提系统.智能家居和扬声器设备或网络会议系统等应用的性能.就在最近,第一个基于深度神经网络(DNN)的方法被提出,采用DNN联合进行AEC和残余回声抑制(RES)/噪声降低,在回声抑制性能方面有显著改善.另一…
论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-5.pdf 基于GAN的回声消除 摘要 生成对抗网络(GANs)已成为语音增强(如噪声抑制)中的热门研究主题.通过在对抗性场景中训练噪声抑制算法,基于GAN的解决方案通常会产生良好的性能.在本文中,提出了卷积循环GAN架构(CRGAN-EC),以解决线性和非线性回声情况.所提出的体系结构在频域中进行了训练,并预测了目标语音的时频(TF)掩码.部署了几种度量损失函数,并研究了它们…
论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3364/attachments/777/815/Thu-1-10-4.pdf 一种基于深度学习的鲁棒级联回声消除算法 摘要 AEC是用来消除扬声器和麦克风之间的反馈.理想情况下,AEC是一个线性问题,可以通过自适应滤波来解决.然而,在实际应用中,有两个重要的问题严重影响AEC的性能,即1)双讲问题和2)主要由扬声器和/或功率放大器引起的非线性失真.针对这两个问题,…