AdaBoost】的更多相关文章

1.boosting Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数.他是一种框架算法,主要是通过对样本集的操作获得样本子集,然后用弱分类算法在样本子集上训练生成一系列的基分类器. 在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合为一个分类器的方法,即boostrapping方法和bagging方法. 1.1 bootstrapping方法的主要过程 i)重复地从一个样本集合D中采样n个样…
1.基本思想: 综合某些专家的判断,往往要比一个专家单独的判断要好.在"强可学习"和"弱科学习"的概念上来说就是我们通过对多个弱可学习的算法进行"组合提升或者说是强化"得到一个性能赶超强可学习算法的算法.如何地这些弱算法进行提升是关键!AdaBoost算法是其中的一个代表. 2.分类算法提升的思路: 1.找到一个弱分类器,分类器简单,快捷,易操作(如果它本身就很复杂,而且效果还不错,那么进行提升无疑是锦上添花,增加复杂度,甚至上性能并没有得到提升…
在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做一个总结. 1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归. AdaBo…
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boosting系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 1. 回顾boosting算法的基本原理 在集成学习原理小结中,我们已经讲到了boosting算法系列的基本思想,如下图: 从图中…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensemble learning)通过组合多个基分类器(base classifier)来完成学习任务,颇有点"三个臭皮匠顶个诸葛亮"的意味.基分类器一般采用的是弱可学习(weakly learnable)分类器,通过集成学习,组合成一个强可学习(strongly learnable)分类器.所谓…
当做重要决定时,我们可能会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题也是这样,这就是元算法(meta-algorithm)背后的思路. 元算法是对其他算法进行组合的一种方式,其中最流行的一种算法就是AdaBoost算法.某些人认为AdaBoost是最好的监督学习的方法,所以该方法是机器学习工具箱中最强有力的工具之一. 集成学习或者元算法的一般结构是:先产生一组"个体学习器",再用某种策略将他们结合起来.个体学习器通常是由一个现有的学习算法从训练数据产生. 根据个体学习器的生…
Adaboost\GBDT\GBRT\组合算法(龙心尘老师上课笔记) 一.Bagging (并行bootstrap)& Boosting(串行) 随机森林实际上是bagging的思路,而GBDT和Adaboost实际上是boosting的思路.而bagging和boosting有什么区别呢?怎样从bagging转到boosting呢? Bagging的假设函数: 如果是二分类问题:,其中T是分类器的总数,g(x)是其中的小分类器的取值(+1或-1),最后根据各个分类器的值求加和,根据和的符号得到…
AdaBoost(自适应boosting,adaptive boosting)算法 算法优缺点: 优点:泛化错误率低,易编码,可用在绝大部分分类器上,无参数调整 缺点:对离群点敏感 适用数据类型:数值型和标称型 元算法(meta algorithm) 在分类问题中,我们可能不会只想用一个分类器,我们会考虑将分类器组合起来使用,这种方法称为集成方法(ensemble method)或元算法.元算法有多种形式,既可以是不同算法集成也可以是一种算法不同设置的集成. 两种集成方式(bagging & b…
1. ensemble learning 集成学习 集成学习是通过构建并结合多个学习器来完成学习任务,如下图: 集成学习通过将多个学习学习器进行结合,常可以获得比单一学习器更优秀的泛化性能 从理论上来说,使用"弱学习器"集成足以获得好的性能,当实践中出于种种考虑,人们往往会使用比较强的学习器. 以下面为例,集成学习的结构通过投票法Voting(少数服从多数)产生: 由上面可以看出:个体学习器应该"好而不同",即个体学习器要有一定的"准确性",并且…
Adaboost提升算法是机器学习中很好用的两个算法之一,另一个是SVM支持向量机:机器学习面试中也会经常提问到Adaboost的一些原理:另外本文还介绍了一下非平衡分类问题的解决方案,这个问题在面试中也经常被提到,比如信用卡数据集中,失信的是少数,5:10000的情况下怎么准确分类? 一 引言 1 元算法(集成算法):多个弱分类器的组合:弱分类器的准确率很低 50%接近随机了 这种组合可以是 不同算法 或 同一算法不同配置 或是 数据集的不同部分分配给不同分类器; 2 bagging:把原始数…