Nyoj 星际之门(一)(Cayley定理)】的更多相关文章

描述 公元3000年,子虚帝国统领着N个星系,原先它们是靠近光束飞船来进行旅行的,近来,X博士发明了星际之门,它利用虫洞技术,一条虫洞可以连通任意的两个星系,使人们不必再待待便可立刻到达目的地. 帝国皇帝认为这种发明很给力,决定用星际之门把自己统治的各个星系连结在一起. 可以证明,修建N-1条虫洞就可以把这N个星系连结起来. 现在,问题来了,皇帝想知道有多少种修建方案可以把这N个星系用N-1条虫洞连结起来?   输入 第一行输入一个整数T,表示测试数据的组数(T<=100)每组测试数据只有一行,…
题目链接:传送门 思路: 计数.树的结构和边权的计数可以分开讨论. ①假设从a到b的路径上有e条边,那么路径上就有e-1个点.构造这条路径上的点有$A_{n-2}^{e-1}$种方案: ②这条路径的权值的选择,可以用隔板法来做,相当于用e-1个隔板分开m个球,要求每个区间至少有一个球,那么就相当于在m-1个间隙里插入e-1个隔板,有$C_{m-1}^{e-1}$种方案: ③在路径之外的点还有n-e-1个,对应有n-e-1条边,每条边的权值可取[1, m],所以有mn-e-1种方案: ④在路径之外…
背景(在codeforces 917D 报废后,看题解时听闻了这两个玩意儿.实际上917D与之“木有关西”,也可以认为是利用了prufer的一些思路.) 一棵标号树的Pufer编码规则如下:找到标号最小的叶子节点,输出与它相邻的节点到prufer 序列, 将该叶子节点删去,反复操作,直至剩余2个节点. 因为有n-2位,每位可以等于1,2,……,n,所以对应着有nn-2种生成树. 即Cayley定理(在组合数学中的应用):有n个标志节点的树的数目等于nn-2.(在一个n阶完全图的所有生成树的数量为…
BZOJ1430:运用Cayley定理解决树的形态统计问题 由Prufer编码可以引申出来一个定理:Cayley 内容是不同的n结点标号的树的数量为n^(n-2) 换一种说法就是一棵无根树,当知道结点总数的时候,其最多可能有n^(n-2)种形态 这只是形态而已 对于BZOJ1430这道题 题目的打架关系可以用无根树来描述 除了形态之外,还要考虑打架的顺序,一共(n-1)!种 乘起来即可 #include<cstdio> ; int n; ; int main() { scanf("%…
参考资料: 1.matrix67 <经典证明:Prüfer编码与Cayley公式> 2.百度百科 3.Forget_forever prufer序列总结 4.维基百科 5.dirge的学习笔记 一.Cayley定理 我们先讲讲Cayley公式/定理?. 凯莱定理,是所有群 G 同构于在 G 上的对称群的子群. 什么鬼?! 其实定理还有另一种表述:过n个有标志顶点的树的数目等于n^(n-2),也即完全图K_n有n^(n-2)棵生成树. 此定理说明用n-1条边将n个一致的顶点连接起来的连通图的个数…
Lily: “Chantarelle was part of my exotic phase.”Buffy: “It’s nice. It’s a mushroom.”Lily: “It is? That’s really embarrassing.”Buffy: “Well, it’s an exotic mushroom, if that’s any comfort.”Joss Whedon, "Anne".A little girl whose name is Anne Spetri…
题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1)!的先后连接顺序. 所以答案为nn-2(n-1)! #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> using nam…
看到\(purfer\)序列板子后,想到这个名词在哪见过,于是找到了一个题,还带出一个: \(T1\). 题目链接:P4430 小猴打架 开始极其懵逼,考虑过大力容斥,但还是失败了,原来是: Cayley定理(凯莱,反正是个神犇就对了): \(n\)个节点的带标号的形态不同的无根树有\(n^{n-2}\)个, 再乘上\((n-1)!\)种生成方式即可, \[ans=(n-1)!×n^{n-2}\] 时间复杂度\(O(n+logn)\),你要是会快速阶乘,就可以\(O(logn)\)了. \(Co…
Cayley 定理 节点个数为 \(n\) 的无根标号树的个数为 \(n^{n−2}\) . 这个结论在很多计数类题目中出现,要证明它首先需要了解 \(\text{Prufer}\) 序列的相关内容.接下来给出证明. 证明: 每一棵树都可以转换为一个 \(\text{Prufer}\) 序列. 根据定义,每一个节点在 \(\text{Prufer}\) 序列中出现的次数等于该节点度数减一,即 \(d_i–1\).整个 \(\text{Prufer}\) 序列的长度为 \(∑_id_i–1=2(n…
定理 过$n$个有标志顶点的树的数目等于$n^{n-2}$. 此定理说明用$n-1$条边将$n$个已知的顶点连接起来的连通图的个数是$n^{n-1}$.也可以这样理解,将n个城市连接起来的树状网络有$n^{n-1}$种可能方案.所谓树状,指的是用$n-1$条边将$n$个城市连接起来,即无环.当然,建造一个树状网络一般是求其长度最短或造价最少等.Cayley定理只能说明可能方案的数目. 证明 Cayley定理的证明方法很多,下面采用最聪明也是最容易理解的一一对应法.不失一般性,假定已知的n个顶点标…