用caffe给图像的混乱程度打分】的更多相关文章

Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还真没有很现成的例子.这篇举个简单的小例子说明一下如何用Caffe和卷积神经网络(CNN: Convolutional Neural Networks)做基于回归的应用. 原理 最经典的CNN结构一般都是几个卷积层,后面接全连接(FC: Fully Connected)层,最后接一个Softmax层输…
本文选自StackOverflow(简称:SOF)精选问答汇总系列文章之一,本系列文章将为读者分享国外最优质的精彩问与答,供读者学习和了解国外最新技术.本文将为读者讲解滚动ListView时图像顺序混乱的解决方法. 问题: zeitgeist ListView有两个TextViews 和一个ImageView.图片是从网上下载的,缓存在LruCache.当在ListView滚动时,图片会出现几秒钟的混乱.直到正确的图片完全加载之前是不应该有任何图片出现的.我发现了几个同样的问题,但是没人能帮助我…
一.[用Python学习Caffe]2. 使用Caffe完成图像目标检测 标签: pythoncaffe深度学习目标检测ssd 2017-06-22 22:08 207人阅读 评论(0) 收藏 举报  分类: 机器学习(22)  深度学习(12)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   2. 使用Caffe完成图像目标检测 本节将以一个快速的图像目标检测网络SSD作为例子,通过Python Caffe来进行图像目标检测. 必须安装windows-ssd版…
这个是在去年微博里面非常流行的,在git_hub上的代码是https://github.com/fzliu/style-transfer 比如这是梵高的画 这是你自己的照片 然后你想生成这样 怎么实现呢在基于windows的caffe上,其实这个很简单. 1 首先在 https://github.com/fzliu/style-transfer 把代码下载下来,另外主要这个代码基于pycaffe的,需要将pycaffe编译好. 最好是在电脑上装一个python progressbar包 ,具体操…
小码农最近在研究深度学习,对所学知识做点记录,以供以后翻阅.在Caffe框架中,数据的格式都是LMDB的,如何将图像数据转换成这个格式呢? 首先,将图像数据和标签生成txt文档,执行一下代码: find `pwd`/examples/images -type f -exec echo {} \; > examples/_temp/temp.txt `pwd`/examples/images 是图像数据的路径,<pre name="code" class="cpp&…
1.卷积层的参数放置在convoluytion_param{}中,pad默认是0,stride默认是1,如果在convoluytion_param中没有写pad = 什么,或者stride = 什么,那就使用默认值. 2.pad = 1是在最左边,最右边,最上边,最下边都添加一行或者一列,不是只在某一侧添加. 3.算一个网络的层数的时候,relu层和pooling层是不计算的.比如vgg16,这16层是13个卷积层和3个全连接层组成的,那5个pooling层是不计算在内的,relu层更不会计算在…
在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致.而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件? 在caffe中,作者为我们提供了这样一个文件:convert_imageset.cpp,存放在根目录下的tools文件夹下.编译之后,生成对应的可执行文件放在 buile/tools/ 下面,…
这是在frcnn_data_layer的操作,即读图片的操作 if (param.gaussian_noise()) { CHECK(img.type() == CV_8UC3) << "gaussian_noise() needs RGB image."; int mu = param.mu(); int sigma = caffe_rng_rand() % param.sigma(); cv::Mat gaussian_noise(img.size(), img.typ…
Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还真没有很现成的例子.这篇举个简单的小例子说明一下如何用Caffe和卷积神经网络(CNN: Convolutional Neural Networks)做基于回归的应用. 原理 最经典的CNN结构一般都是几个卷积层,后面接全连接(FC: Fully Connected)层,最后接一个Softmax层输…
Caffe 提供了matlab接口,可以用于提取图像的feature.…