优化算法-BFGS】的更多相关文章

优化算法-BFGS BGFS是一种准牛顿算法, 所谓的"准"是指牛顿算法会使用Hessian矩阵来进行优化, 但是直接计算Hessian矩阵比较麻烦, 所以很多算法会使用近似的Hessian, 这些算法就称作准牛顿算法(Quasi Newton Algorithm). 1. 牛顿算法(Newton Algorithm) 牛顿算法考虑了函数的二阶单数, 是一种二阶优化方法, 并且是所有其他二阶优化方法的鼻祖. 作为对比, 梯度下降(Gradient Descent)只考虑了函数的一阶导数…
一.BFGS算法 在"优化算法--拟牛顿法之BFGS算法"中,我们得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可对上式进行变换,得到 令,则得到: 二.BGFS算法存在的问题 在BFGS算法中.每次都要存储近似Hesse矩阵 B_k^{-1}" title="B_k^{-1}" alt="" />,在高维数据时,存储浪费非常多的存储空间,而在实际的运算过程中.我们须要的是搜索方向.因此出现了L-BFGS…
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx f(x_0)+f'(x_0)(x-x_0) \] 二阶泰勒展开: \[ f(x)\approx f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2}(x-x_0)^2 \] 梯度下降法 \[ \begin{align*} &f(x)=f(x^k)+g_k^T*(x-x^…
scipy中的optimize子包中提供了常用的最优化算法函数实现,我们可以直接调用这些函数完成我们的优化问题. scipy.optimize包提供了几种常用的优化算法. 该模块包含以下几个方面 使用各种算法(例如BFGS,Nelder-Mead单纯形,牛顿共轭梯度,COBYLA或SLSQP)的无约束和约束最小化多元标量函数(minimize()) 全局(蛮力)优化程序(例如,anneal(),basinhopping()) 最小二乘最小化(leastsq())和曲线拟合(curve_fit()…
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 参考https://blog.csdn.net/weixin_39445556/article/details/84502260 本章我们来学习L-BFGS算法.L…
1 最优化概论 (1) 最优化的目标 最优化问题指的是找出实数函数的极大值或极小值,该函数称为目标函数.由于定位\(f(x)\)的极大值与找出\(-f(x)\)的极小值等价,在推导计算方式时仅考虑最小化问题就足够了.极少的优化问题,比如最小二乘法,可以给出封闭的解析解(由正规方程得到).然而,大多数优化问题,只能给出数值解,需要通过数值迭代算法一步一步地得到. (2) 有约束和无约束优化 一些优化问题在要求目标函数最小化的同时还要求满足一些等式或者不等式的约束.比如SVM模型的求解就是有约束优化…
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简称NN,神经网络是从信息处理角度对人脑的神经元网络系统进行了模拟的相关算法)一样,群体智能优化算法也属于一种生物启发式方法,它们三者可以称为是人工智能领域的三驾马车(PS:实际上除了上述三种算法还有一些智能算法应用也很广泛,比如模拟金属物质热力学退火过程的模拟退火算法(Simulated Algorithm,…
本文介绍一种网格分割线的优化算法,该方法能够找到网格上更精确.更光滑的分割位置,并且分割线能够自由地合并和分裂,下面介绍算法的具体原理和过程. 曲面上的曲线可以由水平集(level set)形式表示,通常表示为φ(r) = 0,其代表曲面上具有相同函数值的等值曲线,由于函数值为零,一般称为零水平集.当曲线在曲面上移动时,可以用如下水平集方程表示: 上式为函数φ(r)对时间t的偏导,即函数φ(r)随时间t的变化情况,等式右边v表示曲线移动速度,▽φ表示曲面上函数φ(r)的梯度. 驱动曲线在曲面上移…
作为支持向量机系列的基本篇的最后一篇文章,我在这里打算简单地介绍一下用于优化 dual 问题的 Sequential Minimal Optimization (SMO) 方法.确确实实只是简单介绍一下,原因主要有两个:第一这类优化算法,特别是牵涉到实现细节的时候,干巴巴地讲算法不太好玩,有时候讲出来每个人实现得结果还不一样,提一下方法,再结合实际的实现代码的话,应该会更加明了,而且也能看出理论和实践之间的差别:另外(其实这个是主要原因)我自己对这一块也确实不太懂. . 先回忆一下我们之前得出的…
近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效.有代表性的多目标优化算法主要有NSGA.NSGA-II.SPEA.SPEA2.PAES和PESA等.粒子群优化(PSO)算法是一种模拟社会行为的.基于群体智能的进化技术,以其独特的搜索机理.出色的收敛性能.方便的计算机实现,在工程优化领域得到了广泛的应用,多目标PSO(MOPSO)算法应用到了不同的优化领域[9~11],但存在计算复杂度高.通用性低.收敛性不好等缺点. 多目标粒子群(MOPSO)算法是由Ca…