1.区别 搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values 在建立索引的时候,一方面会建立倒排索引,以供搜索用:一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用 doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高:如果内存不足够,os会将其写入磁盘上 下面两条document doc1: hello wor…
一.正排索引(前向索引) 正排索引也称为"前向索引".它是创建倒排索引的基础,具有以下字段. (1)LocalId字段(表中简称"Lid"):表示一个文档的局部编号. (2)WordId字段:表示文档分词后的编号,也可称为"索引词编号". (3)NHits字段:表示某个索引词在文档中出现的次数. (4)HitList变长字段:表示某个索引词在文档中出现的位置,即相对于正文的偏移量. 由于一篇文章中的某些词可能出现多次,而且位置不同,而全文检索的本…
正常的索引一般是指关系型数据库里的索引. 把不同的数据存放到不同的字段中.如果要实现baidu或google那种搜索,就需要与一条记录的多个字段进行比对,需要 全表扫描,如果数据量比较大的话,性能就很低. 那反过来,如果把mysql中存放在不同字段中字符串,按一定规则拆分成term[词]存放到 一个字段中[套用mysql中的表结构,实际上不是这样处理的],然后把这些词存放到一个字段中,并在这个字段建立索引. 这样一来,搜索时,只需要查 带有索引的这列就可以了[这一点和关系型数据库 field_n…
相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequency算法,简称为TF/IDF算法. 算法介绍: relevance score算法:简单来说就是,就是计算出一个索引中的文本,与搜索文本,它们之间的关联匹配程度. TF/IDF算法:分为两个部分,IF 和IDF Term Frequency(TF): 搜索文本中的各个词条在field文本中出现了多少次,出现…
搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values.在建立索引的时候,一方面会建立倒排索引,以供搜索用:一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用.doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高:如果内存不足够,os会将其写入磁盘上. 倒排索引举例:doc1: hello world you and…
# index_box 提供搜索功能的实现- 持有std::vector<ITEM> _buffer; 存储所有文章信息- 持有ForwardIndex _forward_index;    - _forward_index.build_findex( _buffer )    - get_all_items _forward_index.get_all_items    - get_items _forward_index.get_items(docid_vect, result, filt…
python3.4学习笔记(二十一) python实现指定字符串补全空格.前面填充0的方法 Python zfill()方法返回指定长度的字符串,原字符串右对齐,前面填充0.zfill()方法语法:str.zfill(width)参数width -- 指定字符串的长度.原字符串右对齐,前面填充0.返回指定长度的字符串. 以下实例展示了 zfill()函数的使用方法:#!/usr/bin/pythonstr = "this is string example....wow!!!";pri…
主要知识点: 本节没有太懂,以后复习时补上       聚合分析的内部原理是什么????aggs,term,metric avg max,执行一个聚合操作的时候,内部原理是怎样的呢?用了什么样的数据结构去执行聚合?是不是用的倒排索引?     搜索+聚合,写个示例     GET /test_index/test_type/_search { "query": { "match": { "search_field": "test&quo…
搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values 在建立索引的时候,一方面会建立倒排索引,以供搜索用:一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用 doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高:如果内存不足够,os会将其写入磁盘上   向index中存储的文档 PUT /cc_article/lo…
编者按:信息革命的浪潮浩浩汤汤,越来越多的人将注意力转向人工智能,想探索它对人类生产生活所产生的可能影响.人工智能的下一步发展将主要来自深度学习,在这个领域中,更多令人兴奋的话题在等待我们探讨:神经网络.图像识别.语言翻译······ 本文是第十九届"二十一世纪的计算"大会精选系列的第四篇,康奈尔大学计算机系教授.1986年图灵奖获得者.电气电子工程师学会(IEEE)及美国计算机协会(ACM)院士John Hopcroft将就AI革命这一话题为大家带来精彩讲解.​ ​ | John H…