sklearn——回归评估指标】的更多相关文章

sklearn中文文档:http://sklearn.apachecn.org/#/ https://www.cnblogs.com/nolonely/p/7009001.html https://www.cnblogs.com/zhubinwang/p/5170087.html 调参:https://www.cnblogs.com/pinard/p/6143927.html GBR优缺点: http://www.cnblogs.com/pinard/p/6140514.html 原理: htt…
一.分类评估指标 准确率(最直白的指标)缺点:受采样影响极大,比如100个样本中有99个为正例,所以即使模型很无脑地预测全部样本为正例,依然有99%的正确率适用范围:二分类(准确率):二分类.多分类(平均准确率) from sklearn.metrics import accuracy_score y_pred = [0, 2, 1, 3] y_true = [0, 1, 2, 3] accuracy_score(y_true, y_pred) 0.5 accuracy_score(y_true…
本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.evaluation下. 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1.回归评估指标 RegressionEvaluator Evaluator for regression, which expects two input columns: prediction and label. 评估…
一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图:  第一个参数true,false是指预测的正确性.  第二个参数true,postitives是指预测的结果.  相关公式: 检测正列的效果: 检测负列的效果: 公式解释: fp_rate: tp_rate: recall:(召回率) 值越大越好 presssion:(准确率) TP:本来是正例,通过模型预测出来是正列 TP+FP:通过模型预测出来的所有正列数(其中包括本来…
在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法,还需要有衡量模型泛化能力的评估价标准,这就是性能度量(performance measure).性能度量反映了任务需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不的评判结果:这意味着模型的“好坏”是相对的,什么样的模型是好的,不仅取决于算法和数据,还决定于任务需求. 性能指标往往使我们…
评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) 混淆矩阵(confusion matricess) 一.选择合适的指标 评估模型是否得到改善,总体表现如何 在构建机器学习模型时,我们首先要选择性能指标,然后测试模型的表现如何.相关的指标有多个,具体取决于我们要尝试解决的问题. 此外,在测试模型时,也务必要将数据集分解为训练数据和测试数据.如果不区…
python实现六大分群质量评估指标(兰德系数.互信息.轮廓系数) 1 R语言中的分群质量--轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评估(聚类注意事项.使用技巧): 没有固定标准,一般会3-10分群.或者用一些指标评价,然后交叉验证不同群的分群指标. 一般的指标:轮廓系数silhouette(-1,1之间,值越大,聚类效果越好)(fpc包),兰德指数rand:R语言中有一个包用30种方法来评价不同类的方法(NbClust),但是速…
为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间内返回较全面和准确的信息,所以信息检索的评价指标通常从三个方面考虑:效率.效果和其他如数据规模. 下面简单介绍几种常用的信息检索评价指标: 1.准确率与召回率(Precision & Recall)        精度和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精…
一. 前言 又GET了一项技能.在做聚类算法的时候,由于要评估所提出的聚类算法的好坏,于是需要与一些已知的算法对比,或者用一些人工标注的标签来比较,于是用到了聚类结果的评估指标.我了解了以下几项. 首先定义几个量:(借鉴该博客:http://blog.csdn.net/luoleicn/article/details/5350378) TP:是指被聚在一类的两个量被正确的分类了(即在标准标注里属于一类的两个对象被聚在一类) TN:是指不应该被聚在一类的两个对象被正确地分开了(即在标准标注里不是一…
机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 什么是ML策略 机器学习策略简介 情景模拟 假设你正在训练一个分类器,你的系统已经达到了90%准确率,但是对于你的应用程序来说还不够好,此时你有很多的想法去继续改善你的系统 收集更多训练数据 训练集的多样性不够,收集更多的具有多样性的实验数据和更多样化的反例集. 使用梯度下降法训练更长的时间 尝试一个不同的优化算法,例如Adam优化算法. 尝试更大的神经网络或者更小的神经网络 尝试dropout…