Spark- RDD持久化】的更多相关文章

Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition.这样的话,对于针对一个RDD反复执行多个操作的场景,就只要对RDD计算一次即可,后面直接使用该RDD,而不需要反复计算多次该RDD. 巧妙使用RDD持久化,甚至在某些场景下,可以将spark应用程序的性能提升10倍.对于迭…
未使用rdd持久化 使用后 通过对比可以发现,未使用RDD持久化时,第一次计算比使用RDD持久化要快,但之后的计算显然要慢的多,差不多10倍的样子 代码 public class PersistRDD { private static SparkConf conf = new SparkConf().setMaster("local").setAppName("persistrdd"); private static JavaSparkContext jsc = n…
以上说明出自林大贵老师关于Hadoop.spark书籍,如有兴趣请自行搜索购买! 这是我的GitHub分享的一些笔记:https://github.com/mahailuo/pyspark_notes…
1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.sh 启动spark-shell s…
[场景] Spark对RDD执行一系列算子操作时,都会重新从头到尾计算一遍.如果中间结果RDD后续需要被被调用多次,可以显式调用 cache()和 persist(),以告知 Spark,临时保存之前的计算结果,这样后续多个RDD使用时,就不用重新计算该临时结果了,从而节约计算资源. 要注意cache和persist是惰性的,需要action算子来触发. [Spark的持久化级别] [选择一种最合适的持久化策略] 默认情况下,性能最高的当然是MEMORY_ONLY,但前提是内存必须足够足够大,可…
Spark练习之创建RDD(集合.本地文件) 一.创建RDD 二.并行化集合创建RDD 2.1 Java并行创建RDD--计算1-10的累加和 2.2 Scala并行创建RDD--计算1-10的累加和 三.使用本地文件和HDFS创建RDD 3.1 Java---使用本地文件创建RDD 3.2 Scala---使用本地文件创建RDD 四.RDD持久化原理 五.不使用RDD持久化的问题的原理 六.RDD持久化工作的原理 七.RDD持久化策略 八.如何选择RDD持久化策略 一.创建RDD 二.并行化集…
摘要: 1.spark 提供的持久化方法 2.Spark的持久化级别 3.如何选择一种最合适的持久化策略 内容: 1.spark 提供的持久化方法 如果要对一个RDD进行持久化,只要对这个RDD调用cache()和persist()即可.在第二次计算RDD是就不用再重新计算了,从而提高spark作业效率对于persist()方法而言,我们可以根据不同的业务场景选择不同的持久化级别. 2.Spark的持久化级别 持久化级别 含义解释 MEMORY_ONLY 使用未序列化的Java对象格式,将数据保…
对RDD的学习进行一下整理 RDD:基于内存的集群计算容错抽象 分布式内存抽象的概念---弹性分布式数据集(RDD),它具备MapReduce等数据流模型的容错特性,并且允许开发人员在大型集群上执行基于内存的计算. 为了有效地实现容错,RDD提供了一种高度受限的共享内存,即RDD是只读的,并且只能通过其他 RDD上的批量操作来创建. RDD基于工作集的应用,同时具有数据流模型的特点:自动容错.位置感知调度和可伸缩性.允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,提…
1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化.     Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象.     用户可以使用两种方法创建…
一句话说,在Spark中对数据的操作其实就是对RDD的操作,而对RDD的操作不外乎创建.转换.调用求值. 什么是RDD RDD(Resilient Distributed Dataset),弹性分布式数据集. 它定义了如何在集群的每个节点上操作数据的一系列命令,而不是指真实的数据,Spark通过RDD可以对每个节点的多个分区进行并行的数据操作. 之所以称弹性,是因为其有高容错性.默认情况下,Spark会在每一次行动操作后进行RDD重计算,如想在多个行动操作中使用RDD,可以将其缓存(以分区的方式…