DAG动态规划-硬币问题】的更多相关文章

题目:有n种硬币,面值分别为V1,V2,...Vn,每种都有无限多.给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值! #include <bits/stdc++.h> using namespace std; int n, m, t; const int INF = 0x3f3f3f3f; int a[1005],Max[1005],Min[1005]; void dfs(int *d, int s) { for(int i=1; i<=n; i+…
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=show_problem&problem=2299 题意:输入n和m,有n个点和m条有向边,求出一个节点集合包括的节点个数最多,而且该节点内的不论什么两点a,b,要么a能到达b,要么b能到达a,要么a和b互相到达. 思路:强连通分量缩点形成有向无环图DAG,把缩点后的每一个点的权值置为该强连通分量的节点个…
硬币问题 有n种硬币,面值分别为V1,V2,...,Vn,每种都有无限多.给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值.1<=n<=100, 0<=S<=10000,1<=Vi<=S. 分析: 我们把每种面值看做一个点,表示“还需要凑足的面值”,则初始状态为S,目标状态为0.若当前在状态 i ,每使用一个硬币j ,状态便转移到 i-Vj . 注意到最长路和最短路的求法是类似的,下面只考虑最长路.由于终点固定,d(i)的确切含义变…
题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std; struct node { int x…
问题描述 "不错,不错!那么,准备好迎接下一道题了么?"一道白光闪过,CJK 眼前出现了 1e100 个小学生."他们中,有一些人轨了我的机子.现在,我需要你在 1S 之内找出他们,并让他们认错!"凭借自己无所不知的神(xuan)奇(xue)力量, CJK 立刻发现了轨了 JesseLiun的机子的那 n 个小学生.但是,他还要想办法让小学生们认错.好在 CJK 有无穷多的糖,而有 p 个小学生愿意以一定的代价被收买.而小学生间有 r 个 BiShi 关系.一旦一个…
首先我们来看一下jieba分词的流程图: 结巴中文分词简介 1)支持三种分词模式: 精确模式:将句子最精确的分开,适合文本分析 全模式:句子中所有可以成词的词语都扫描出来,速度快,不能解决歧义 搜索引擎模式:在精确的基础上,对长词再次切分,提高召回 2)支持繁体分词 3)支持自定义词典 4)基于Trie树结构实现高效的词图扫描,生成句子汉字所有可能成词情况所构成的有向无环图(DAG) 5)  采用了动态规划查找最大概率路径,找出基于词频的最大切分组合 6)对于词库中不存在的词,也就是未登录词,采…
一些概念 无向图: 连通图:在无向图中,任意两点都直接或间接连通,则称该图为连通图.(或者说:任意两点之间都存在可到达的路径) 连通分量: G的 最大连通子图 称为G的连通分量. 有向图 (ps.区别在与"强") 强连通图: 在有向图中,对于每一对顶点Vi,Vj都存在从Vi到Vj和从Vj到Vi的路径(任意两点之间都存在可到达对方的路径),则称该图为强连通图. 强连通分量: 有向图G的 最大强连通子图 称为G的强连通分量. 求强连通分量+有向图的压缩(缩点) 缩点即讲一个强连通分量中的点…
很多动态规划问题都可以转化为DAG上的最长路,最短路,或路径计数问题. 硬币问题: 有N中硬币,面值分别为v1,v2,v3,……vn,每种都无穷多,给定非负整数S,可以选用多少个硬币,使他们的总和恰好为S.输出硬币数目的最小值和最大值. 解:每种面值看作一个点,表示:还需要凑足的面值.则开始状态为S,目标状态为0:若当前状态为i,当使用硬币j后,状态转为i-v[j]. 代码说明好了. #include <iostream> #include <cstdio> #include &l…
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.矩形嵌套 题目描述:        有n个矩形,每个矩形可以用两个整数a,b描述,表示它的长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩形X旋转90°).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)内.你的任务是选出尽可能多的矩形排成一行.使得…
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽.矩形X(a , b)可以嵌套在矩形Y(c , d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩形X旋转90°).例如(1,5)可以嵌套在(6, 2)内,但不能嵌套在(3, 4)内.你的任务是选出尽可能多的矩形排…