C++求最大公约数】的更多相关文章

Euclid求最大公约数算法 #include <stdio.h> int gcd(int x,int y){ while(x!=y){ if(x>y) x=x-y; else y=y-x; } return x; } int main(int argc, const char *argv[]) { if(3!=argc){ printf("Usage:<a,out> num1 num2\n"); return -1; } printf("%d\…
#欧几里得求最大公约数 #!/usr/bin/env python #coding -*- utf:8 -*- #iteration def gcd(a,b): if b==0: return a else: return gcd(b, remainder(a, b)) #此方法仅仅书用于a和b都为正数 def gcd_1(a,b): while(b>0): rem = remainder(a,b) a = b b = rem return a def remainder(x,y): retur…
Divided Land Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 123    Accepted Submission(s): 64 Problem Description It’s time to fight the local despots and redistribute the land. There is a rect…
求最大公约数哪个强,果断GCD,非递归版本和递归版本如下: #include<iostream> using namespace std; int gcd(int a, int b){ //非递归版本 int big = max(a, b); int small = min(a, b); int temp; while(small != 0 ){ temp = big % small; big = small; small = temp; } return big; } int gcd_(in…
int gcd(int a, int b)//求最大公约数,a为分子,b为分母 { ) return a; return gcd(b,a%b); }…
辗转相除法,又被称为欧几里德(Euclidean)算法, 是求最大公约数的算法. 当然也可以求最小公倍数. 算法描述 两个数a,b的最大公约数记为GCD(a,b).a,b的最大公约数是两个数的公共素因子的乘积.如462可以分解成2 × 3 × 7 × 11:1071可以分解成3 × 3 × 7 × 17.462和1071的最大公约数等于它们共有的素因数的乘积3 × 7 = 21.如果两数没有公共的素因数,那么它们的最大公约数是1,也即这两个数互素,即GCD(a,b)=1.另g=GCD(a,b),…
欧几里得算法求最大公约数算法思想: 求p和q的最大公约数,如果q=0,最大公约数就是p:否则,p除以q余数为r,p和q的最大公约数即q和r的最大公约数. java实现代码: public class Demo0 { public static void main(String[] args) { System.out.println(gcd(24,120)); } public static int gcd(int p,int q){ if(q==0) return p; int r=p%q;…
求最大公约数和最小公倍数 假设有两个数a和b,求a,b的最大公约数和最小公倍数实际上是一个问题,得出这两个数的最大公约数就可以算出它们的最小公倍数. 最小公倍数的公式是 a*b/m m为最大公约数 因为 a=m*i; b=m*j; 最小公倍数为 m*i*j 计算a和b的最大公约数的方法: 方法一: 更相损减法: 反复把两数的最大者减去最小者,直至两数相等,这个数就是最大公约数 如 4 和 6 6-4=2 2个数变成了4和2 4-2=2 两个数变成了2和2 2=2 即2是两数的最大公约数 方法二:…
下面是四种用java语言编程实现的求最大公约数的方法: package gcd; import java.util.ArrayList; import java.util.List; public class gcd { public static void main(String[] args) { long startTime; long endTime; long durationTime; int[] testArray1 = new int[]{784, 988, 460, 732,…
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } 证明: 对于a,b,有a = kb + r  (a , k , b , r 均为整数),其中r = a mod b . 令d为a和b的一个公约数,则d|a,d|b(即a.b都被d整除), 那么 r =a - kb ,两边同时除以d 得 r/d = a/d - kb/d = m (m为整数,因为r也…