HDU 1695】的更多相关文章

D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y 肯定 都在 min  (b/k, d/k)  ,所以 奇数 最后 减去 一半 即可. #include<bits/stdc++.h> using namespace std; #define ll long long #define maxn 1234567 bool vis[maxn+10];…
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @FileName: HDU 1695 容斥 或 莫比乌斯反演.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #in…
http://acm.hdu.edu.cn/showproblem.php?pid=1695 x是[1,b],y是[1,d],求GCD(x,y)=k的对数(x,y无序) 对x,y都除以k,则求GCD(x,y)=1 此时枚举x,问题转化为[1,d]区间内与x互素的数字个数,这个问题是hdu 4135 有一个特殊的地方是x,y无序,对于这点只要保证x始终小于y就可以了 特判k=0 #include <iostream> #include <cstdio> #include <cs…
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, y)有多少组,不考虑顺序. 思路:a = c = 1简化了问题,原问题可以转化为在[1, b/k]和[1, d/k]这两个区间各取一个数,组成的数对是互质的数量,不考虑顺序.我们让d > b,我们枚举区间[1, d/k]的数i作为二元组的第二位,因为不考虑顺序我们考虑第一位的值时,只用考虑小于i的情…
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a <= b <= 100000, c=1, c <= d <= 100000, 0 <= k <= 100000) 思路:由于x与y的最大公约数为k,所以xx=x/k与yy=y/k一定互质.要从a/k和b/k之中选择互质的数,枚举1~b/k,当选择的yy小于等于a/k时,能够…
http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y)满足GCD(x,y)=k?  //(x,y)和(y,x)视作同一个 题解:既然是要x,y的最大公约数为k,那说明x/k和y/k是互质的,只需在[1,b/k]和[1,d/k]范围内找到适合的x,y即可. 特判:当k等于0时,显然没有符合的,输出结果0: #include<iostream> #in…
题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd(x,y)=1的(x,y)的对数. 下文默认$n \leq m$ 1.容斥 (先写了一个的裸的容斥.) 令$f(k)为gcd(x,y)=\lambda k的(x,y)的对数$ $ANS=f(0种质数的积)-f(1种质数的积)+f(2种质数的积)-\cdots+(-1)^mf(m种质数的积)$ 代码:…
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L2, R2 / K]中GCD是1的对数. 由于(1, 2)和(2, 1)是同一对. 那么我们枚举大区间,限制数字一定是小于等于枚举的那个数字就行. 比如[1, 3]和[1, 5] 我们枚举大区间,[1, 5],在[1, 3]中找互质的时候,由于又需要要小于枚举数字,那么直接上phi 对于其他的,比如…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4272    Accepted Submission(s): 1492 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…