Histogram of oriented gradients 简称 HoG, 是计算机视觉和图像处理领域一种非常重要的特征,被广泛地应用于物体检测,人脸检测,人脸表情检测等. HoG 最早是在2005 年的CVPR 上由 Navneet Dalal 和 Bill Triggs 提出来的.HoG 的算法很简单,对于物体的特征表示却非常有效.简单而高效,这大概也是其从被提出来之后,就被CV界广泛使用的原因所在. 下面简单介绍一下HoG 的算法: 首先是计算梯度: 我们知道图像上一点,在水平方向和垂…
SIFT :scale invariant feature transform HOG:histogram of oriented gradients 这两种方法都是基于图像中梯度的方向直方图的特征提取方法. 1. SIFT 特征  实现方法: SIFT 特征通常与使用SIFT检测器得到的感兴趣点一起使用.这些感兴趣点与一个特定的方向和尺度(scale)相关联.通常是在对一个图像中的方形区域通过相应的方向和尺度变换后,再计算该区域的SIFT特征. 首先计算梯度方向和幅值(使用Canny边缘算子在…
本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/histogram-of-oriented-gradients/ 翻译:coneypo 在这篇文章中,我们将会学习 HOG (Histogram of Oriented Gradients,方向梯度直方图)特征描述子 的详细内容. 我们将学习 HOG 算法是如何实现的,以及在 OpenCv / MATLAB…
wiki上的介绍 OpenCV的实现 cv::HOGDescriptor Struct Reference opencv cv::HOGDescriptor 的调用例子 HOGDescriptor hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, 1, -1, HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS); hog.setSVMDet…
Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了.那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申. 1.分割图像 因为HOG是一个局部特征,因此如果你对一大幅图片直接提取特征,是得不到好的效果的.原理很简单.从信息论角…
HOG(Histograms of Oriented Gradients )梯度方向直方图 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.此方法使用了图像的本身的梯度方向特征,类似于边缘方向直方图方法,SIFT描述子,和上下文形状方法,但其特征在于其在一个网格密集的大小统一的方格单元上计算,而且为了提高精确度使用了重叠的局部对比度归一化的方法. 这篇文章的作者Navneet Dalal和Bi…
Histogram of Oriented Gridients(HOG) 方向梯度直方图 Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了.那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申. 1.分割图像 因为HOG是一…
Face recognition using Histograms of Oriented Gradients 这篇论文的主要内容是将Hog算子应用到人脸识别上. 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/40757997 1. Main Contribution Extract Hog descriptors from a regular grid. Fusion of HOG descriptors at different…
之前的文章行人计数.计次提到HOG特征这个概念,这两天看了一下原版的论文,了解了一下HOG特征的原理,并依据自己的理解将这种方法的流程写了下来,假设有不正确的地方欢迎指正. HOG(Histograms of Oriented Gradients)特征的基本思想:The basic idea is that local object appearance and shape can often be characterized rather well by the distribution of…
点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1-Score, recall, precision Softmax Classifier (三个隐含层) Softmax Classifier (两个隐含层) Softmax classifier (一个隐含层) Softmax classifier (无隐含层) 机器视觉: LBP-TOP 机器视觉…