前面的不做过多解释了. 这里定义了两个占位符,各位也知道,在训练时,feed_dict会填充它们. 定义相关网络. 这里是权值矩阵和偏差. 这里是实例化了网络,定义了优化器和损失,和上一篇一样. 最后,写一个两重的for循环,进行训练. 然后简单地测试一下.…
深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数组成的链:\(f_3(f_2(f_1))\),$f_1$为网络第一层,叫输入层.$f_2$为第二层,依次类推,中间层叫做隐藏层.最后一层为输出层.链的全长称为模型的深度. 每个隐藏层都有张量值,这些隐藏层的维数为模型的宽度. 概念 解释 输入层 网络的第一层 隐藏层 网络的中间N层 输出层 网络的最…
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介. 经详细注释的代码:放在我的github地址上,可下载. 一.多层感知机(MLP)原理简介 多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐层,…
@author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43221829 转载:http://blog.csdn.net/u012162613/article/details/43221829 本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介.…
加载数据集. 这里的keep_prob是dropout的一个参数.dropout是一种随机置零的策略,用来防止模型过拟合. 这里定义两层,上面是卷积层,下面是池化层. 搭建了一层卷积.一层池化.一层卷积.一层池化.之后将输出展平,输入到全连接层里,进行输出,激活函数选用了relu函数. 这是上面神经网络用到的参数. 之后我们构建模型,pred是整个网络的输出. cost设置为交叉熵 \[l(\varphi)=ylog(1-\varphi)+(1-y)log(1-\varphi)\] 优化器设置为…
第一步仍然是导入库和数据集. ''' To classify images using a reccurent neural network, we consider every image row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample. ''' 这里我们设定了各种参数,此时的n_ste…
自动编码机(Autoencoder)属于非监督学习,不需要对训练样本进行标记.自动编码机(Autoencoder)由三层网络组成,其中输入层神经元数量与输出层神经元数量相等,中间层神经元数量少于输入层和输出层.在网络训练期间,对每个训练样本,经过网络会在输出层产生一个新的信号,网络学习的目的就是使输出信号与输入信号尽量相似.自动编码机(Autoencoder)训练结束之后,其可以由两部分组成,首先是输入层和中间层,我们可以用这个网络来对信号进行压缩:其次是中间层和输出层,我们可以将压缩的信号进行…
import库,加载mnist数据集. 设置学习率,迭代次数,batch并行计算数量,以及log显示. 这里设置了占位符,输入是batch * 784的矩阵,由于是并行计算,所以None实际上代表并行数.输出是10类,因为mnist数据集是手写数字0-9,所以分成10类是很正常的. W和b是变量. 第一行代码建立了一个softmax模型,意思是,将10类最后的输出结果再通过softmax函数换算一下,softmax函数如下: ,其实就是做了一次转换,让各个输出变成了概率,且概率之和等于1. 也要…
最近邻模型,更为常见的是k-最近邻模型,是一种常见的机器学习模型,原理如下: KNN算法的前提是存在一个样本的数据集,每一个样本都有自己的标签,表明自己的类型.现在有一个新的未知的数据,需要判断它的类型.那么通过计算新未知数据与已有的数据集中每一个样本的距离,然后按照从近到远排序.取前K个最近距离的样本,来判断新数据的类型. import相关库,记载数据(当然正常情况下不是这么加载的),指定了5000个样本用来训练,200个样本用来测试. 然后下面分别定义了训练和测试的计算图的输入. 算法很简单…
首先呢,进行import,对于日常写代码来说,第二行经常写成:import numpy as np,这样会更加简洁.第三行import用于绘图. 定义了学习率.迭代数epoch,以及展示的学习步骤,三个参数. 同时给出了训练用的原始数据,n_samples用来记录一共有多少数据. 这里指明了计算图的输入,W和b是模型的权重矩阵和偏差,目的是要学习一个 \[y=\mathbf{W}x+\mathbf{b}\] 函数. 这里就定义了上述函数. 这里定义了损失函数cost,使用了平方损失. optim…