如何用快速傅里叶变换实现DFT】的更多相关文章

[目标]   如何以 \(O(N \log N)\) 的效率将系数多项式转换为点值多项式. [前置技能]   众所周知,\(x^n=1\)的根有n个,而且它们分别是\(e^{\frac{2*π*i}{n}}\),即在复平面内的坐标为\((cos(2*π*i),sin(2*π*i))\).   为了方便描述,我们分别用\(ω_n^0\)~\(ω_n^{n-1}\)来描述这n个根.而且等会我们要算的,就是多项式A在这n个点处的点值.   我们由复数的性质可以得到一些公式:   \((ω_{2n}^{…
现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformation, 快速傅里叶变换, 是DFT(Discrete Fourier Transform, 离散傅里叶变换)的快速实现版本. 据说在信号处理领域广泛的应用, 而且在OI中也有广泛的应用(比如SDOI2017 R2至少考了两道), 所以有必要学习一波.. 划重点: 其实学习FFT最好的教材是<算法导论…
目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优化 细节 小优化 实现 超~毒瘤优化. 实战! First Second 温馨插入:生成函数 Third 总所周知,FFT是一个非常麻烦的算法,再加上博主语文不好,便写起来有点麻烦,但会尽力去写.要以后自己看不懂就... 注:因为最近的压力紧张,便没有继续学习FFT,这仅为目前的半成品以及一些目前已…
问题描述 离散傅立叶变换在信号处理中扮演者重要的角色.利用傅立叶变换,可以实现信号在时域和频域之间的转换. 对于一个给定的长度为n=2m (m为整数) 的复数序列X0, X1, …, Xn-1,离散傅立叶变换将得到另一个长度为n的复数序列Y0, Y1, …, Yn-1.其中 Yi=X0+X1wi+ X2w2i+ X3w3i+…+ Xn-1w(n-1)i 其中w=e2πI/n=cos(2π/n)+I sin(2π/n),称为旋转因子,其中I为虚数单位,I2= –1. 给定输入序列X,请输出傅立叶变…
多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <queue> #include <vector> #include <map> #include &l…
快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章中,以看似简单的计算技巧来讲解这个东西. 本文的目标是,深入Cooley-Tukey  FFT 算法,解释作为其根源的“对称性”,并以一些直观的python代码将其理论转变为实际.我希望这次研究能对这个算法的背景原理有更全面的认识. FFT(快速傅里叶变换)本身就是离散傅里叶变换(Discrete…
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一道叫做"神秘的常数 $\pi$"的题目而去学习过FFT, 但是基本就是照着板子打打完并不知道自己在写些什么鬼畜的东西OwO 不过...博主这几天突然照着算法导论自己看了一遍发现自己似乎突然意识到了什么OwO然后就打了一道板子题还1A了OwO再加上午考试差点AK以及日更频率即将不保于是就有了…
快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具体请看手写版笔记 参考文献:picks miskcoo menci 阮一峰 Fast Fourier Transform 单位复数根 虚数 复数 \(i\),表示逆时针旋转90度 \(a+bi\),对应复平面上的向量 复数加法 同向量 复数乘法 "模长相乘,幅角相加",\((a+bi)*(…
FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将两个多项式分别转化为点值表达式,完成点值表达式的乘法,然后转为系数表达式得到结果. 点值表达式的乘法.整体考虑:假设已知两个多项式$A(x)$和$B(x)$.如果已知当$x=x_0$时$A(x_0)$和$B(x_0)$,则其乘积一定有点值$A(x_0)*B(x_0)$.因此点值表达式的乘法复杂度$O…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…
本文只讨论FFT在信息学奥赛中的应用 文中内容均为个人理解,如有错误请指出,不胜感激 前言 先解释几个比较容易混淆的缩写吧 DFT:离散傅里叶变换—>$O(n^2)$计算多项式乘法 FFT:快速傅里叶变换—>$O(n*\log(n)$计算多项式乘法 FNTT/NTT:快速傅里叶变换的优化版—>优化常数及误差 FWT:快速沃尔什变换—>利用类似FFT的东西解决一类卷积问题 MTT:毛爷爷的FFT—>非常nb/任意模数 FMT 快速莫比乌斯变化—>感谢stump提供 多项式…
扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧. 更改了一些以前不大正确的地方,又添加了一些推导,证明实在不会. 有一些公式,但个人觉得还是比较好理解.可能还会有错误,希望大佬友情指出. 最后,祝各位看官新年快乐. 回家过寒假去咯(虽然就\(4\)天\(qwq\)) 多项式 一个次数界为\(n\)的多项式\(A(x) = \sum_{i = 0…
FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首先介绍, 欧拉公式: 公式描述:公式中e是自然对数的底,i是虚数单位. 快速傅里叶变换(FFT)详解 前言: DFT:离散傅里叶变换—>O(n2)计算多项式乘法 FFT:快速傅里叶变换—>O(n∗log(n)O(n∗log⁡(n)计算多项式乘法 FNTT/NTT:快速傅里叶变换的优化版—>优…
FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a_0+a_1x+a_2x^2\) \(f(x)=b_0+b_1x+b_2x^2\) 他们的乘积c(x)就是 \(c(x)=a_0b_0+a_0b_1x+a_0b_2x^2+a_1b_0x+a_1b_1x^2+a_1b_2x^3+a_2b_0x^2+a_2b_1x^3+a_2b_2x^4\) c(x)…
快速傅里叶变换及其C程序 <快速傅里叶变换及其C程序>是中国科学技术大学出版社出版的.本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义.存在条件及其性质,离散傅里叶变换(DFT)的定义.性质及由离散引起的频谱混叠和渗漏,快速傅里叶变换(FFT)算法的基本原理和复序列基2算法及其实用程序,并以此为基础,给出了实序列DFT.正弦变换.余弦变换.傅里叶级数.谱函数近似.功率谱估计.卷积和相关等的快速算法和实用程序,给出了 2D—DFT的行列算法.二维实序列2D—DFT的行列算…
http://acm.hdu.edu.cn/showproblem.php?pid=1402 快速傅里叶变换优化的高精度乘法. https://blog.csdn.net/ggn_2015/article/details/68922404 这个写的很详细了. #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<iostream> #incl…
实在是 美丽的数学啊 关于傅里叶变换的博客 讲的很细致 图片非常易于理解http://blog.jobbole.com/70549/ 大概能明白傅里叶变换是干吗的了 但是还是不能明白为什么用傅里叶变换来算多项式求和 在多项式中,DFT就是系数表式转换成点值表示的过程. 我们熟知的是多项式的系数表示法,通过给定一组  来确定一个唯一的多项式: 而多项式还可以有另一种表示法,称为点值表示法: 其中 可以证明,对一组互不相同的该方法也可以唯一地表示一个多项式. 为什么要引入点值表示法这个并不"直观&q…
第一次接触省选的知识点呢!zrf大佬在课堂上讲的非常清楚,但由于本蒟蒻实在太菜了,直接掉线了.今天赶紧恶补一下. 那么这篇博客将分为两块,第一块是FFT的推导和实现,第二块则是FFT在OI上的应用 因为博主是蒟蒻,难免有些写错的地方,还请各位大佬不吝指正. 目标是能够让像博主这样的蒟蒻都能学会FFT(都有耐心看完这篇博客) 一.FFT的推导与实现 1.多项式的表示 最常见的表示方式自然是系数表示 诶诶诶,别走啊,我说清楚点还不行吗?  其实就是我们常见的表达方式 这种表达式的优势在于我们可以用O…
多项式的点值表示(Point Value Representation) 设多项式的系数表示(Coefficient Representation): \[ \begin{align*} \mathrm P_a(x)&=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1} \\ &= \sum_{i=0}^{n-1}a_ix^i \end{align*} \] 则我们对上面的式子可以代入不同的 \(n\) 个 \(x\) 的值,构成一个 \(n\) 维向量: \[ \…
目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明易懂的FFT(快速傅里叶变换) 快速傅里叶变换(FFT)详解 (下面的图片是来自于这2篇博客里面的,仔细看可以发现右下角有水印--) 系数表示法 一个一元\(n\)次多项式\(f(x)\)可以被表示为:\[f(x) = \sum_{i = 0}^{n}a_{i}x^{i}\] 即用\(i\)次项的系…
(原稿:https://paste.ubuntu.com/p/yJNsn3xPt8/) 快速傅里叶变换,是求两个多项式卷积的算法,其时间复杂度为$O(n\log n)$,优于普通卷积求法,且根据有关证明,快速傅里叶变换是基于变换求卷积的理论最快算法. 关于FFT的介绍,最详细易懂的是<算法导论>上的内容. 其大致介绍与代码在这里:http://www.cnblogs.com/rvalue/p/7351400.html. 1.FFT&NTT模板 #include<cmath>…
[学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) 的流程,我也不准备长篇大论地分析\(FFT...\) 将系数表示法转换为点值表示法 \(O(n \log n)​\) 对于点值表示法直接进行操作 \(O(n)\) 将点值表示法转换为系数表示法 \(O(n \log n)​\) 这样的流程,最终复杂度是\(O(n \log n)\) 的,现在我们从最…
这可能是我第五次学FFT了--菜哭qwq 先给出一些个人认为非常优秀的参考资料: 一小时学会快速傅里叶变换(Fast Fourier Transform) - 知乎 小学生都能看懂的FFT!!! - 胡小兔 - 博客园 快速傅里叶变换(FFT)用于计算两个\(n\)次多项式相乘,能把复杂度从朴素的\(O(n^2)\)优化到\(O(nlog_2n)\).一个常见的应用是计算大整数相乘. 本文中所有多项式默认\(x\)为变量,其他字母均为常数.所有角均为弧度制. 一.多项式的两种表示方法 我们平时常…
数学定义: (详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_PbOK70jE2geVioprSVyPTTQuLwN-IhMH8NREmWSDnmcfQEY8w0kq&wd=&eqid=8244c46a0009451a000000035c0e2c39) 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问…
本例应用的是快速傅里叶变换 (fast Fourier transform),即利用计算机计算离散傅里叶变换(DFT)的高效.快速计算方法的统称,简称FFT.快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的.采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著. 傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加.函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成…
通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律.但是它的致命缺点是:计算量太大,时间复杂度太高,当采样点数太高的时候,计算缓慢,由此出现了DFT的快速实现,即下面的快速傅里叶…
快速傅里叶变换(FFT)                                                                               ---- LLppdd 前言 关于这篇文章     非常高兴能有机会来探讨快速傅里叶变换,也就是大家熟知的 \(FFT\) 在 \(OI\) 中的运用.以前了解过一次 \(FFT\) ,现在过了几个月,数学和 \(OI\) 水平都有了一定的进步之后,再回过来重新思考它,应该有了更深的了解,所以准备写一篇较为详细的文章…
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多项式为\(A(x)=\sum_{i=0}^{n}a_ix^i,B(x)=\sum_{i=0}^{m}b_ix^i\) Prerequisite knowledge: 初中数学知识(手动滑稽) 最简单的多项式方法就是逐项相乘再合并同类项,写成公式: 若\(C(x)=A(x)B(x)\),那么\(C(x…
https://blog.csdn.net/enjoy_pascal/article/details/81478582 FFT前言快速傅里叶变换 (fast Fourier transform),即利用计算机计算离散傅里叶变换(DFT)的高效.快速计算方法的统称,简称FFT.快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的.采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著. FFT(Fast Fourier…