预处理 考虑模数\(10\)是合数不好做,所以我们可以用一个常用套路: \(\prod_{i=l}^ra_i\equiv x(mod\ 10)\)的方案数等于\(\prod_{i=l}^ra_i\equiv x(mod\ 2)\)的方案数乘上\(\prod_{i=l}^ra_i\equiv x(mod\ 5)\)的方案数. 状态设置 考虑接下来怎么求. 既然现在模数是质数,而在模质数意义下的逆元是唯一的,除了\(0\)没有逆元,因此只要特殊考虑\(0\). 设\(f_{i,j}\)表示 将区间\…
\(2019/8/27\)大考 \(\color{#ff0808}{\text{初二诀别赛(SAD)}}\) 题目名称 链接 寿司 \(BSOJ5111\) 秀秀的森林 \(BSOJ5125\) 分组 \(BSOJ5126\) 入阵曲 \(BSOJ5129\) 将军令 \(BSOJ5130\) 文本编辑器 \(BSOJ5089\) [第一题] \(\color{#0080FF}{\underline{\large{题面}}}\) [简述] 有一个由\(R\)和\(B\)组成的字符串环,每次可以交…
体育成绩统计 / Score 题目描述 正所谓“无体育,不清华”.为了更好地督促同学们进行体育锻炼,更加科学地对同学们进行评价,五道口体校的老师们在体育成绩的考核上可谓是煞费苦心.然而每到学期期末时,面对海量的原始数据,如何对数据进行处理,得到同学们的体育总评成绩却又成了体育部老师的一大难题. 对于大一的同学们来说,体育课的总评成绩由五部分组成:体育课专项成绩(满分50分).长跑测试成绩(满分20分).“阳光长跑”成绩(满分10分).体质测试成绩(满分10分).“大一专项计划”成绩(满分10分)…
[问题描述] 小美很喜欢下象棋. 而且她特别喜欢象棋中的马. 她觉得马的跳跃方式很独特.(以日字格的方式跳跃) 小芳给了小美一张很大的棋盘,这个棋盘是一个无穷的笛卡尔坐标. 一开始\(time=0\)的时候,马在原点.每个时刻马都跳一步. 可是这个坐标图有点残缺,有几个点是不能跳到的. 然后小美很好奇在\(time=[0,K]\)中,马能跳到多少个不同的格子. [输入格式] 从文件chess.in中读入数据. 第一行两个数K,n表示时间上限和残缺的点的数量. 接下来n行,每行一个坐标 xi,yi…
Description 经过了16个工作日的紧张忙碌,未来的人类终于收集到了足够的能源.然而在与Violet星球的战争中,由于Z副官的愚蠢,地球的领袖applepi被邪恶的黑魔法师Vani囚禁在了Violet星球.为了重启Nescafé这一宏伟的科技工程,人类派出了一支由XLk.Poet_shy和lydrainbowcat三人组成的精英队伍,穿越时空隧道,去往Violet星球拯救领袖applepi. applepi被囚禁的地点只有一扇门,当地人称它为“黑魔法师之门”.这扇门上画着一张无向无权图,…
题目大意: 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^n[lcm(i,j)>n](n\leq 10^{10})$的值. 题解: 这题貌似有n多种做法... 为了更好统计,把原式变为$n^2-\sum\limits_{i=1}^n\sum\limits_{j=1}^n[lcm(i,j)\leq n]$. 然后开始毒瘤... 首先,考虑枚举$lcm(i,j)$,设为$d$,计算有多少对$i.j$的最小公倍数为$d$. 设$i=p_1^{a_1}p_2^{a_2}\…
题目大意: 设$S(n,m)$为第二类斯特林数,$F_i$表示斐波那契数列第$i$项. 给定$n,R,K$,求$\sum\limits_{i=1}^{n}(\sum\limits_{m=1}^{R}F_i)!i!\sum\limits_{l=0}^{i}\sum\limits_{j=0}^{\sum\limits_{t=1}^{R}F_t}\frac{S(k,i-l)}{l!}\frac{S(i,\sum\limits_{w=1}^{R}F_w-j)}{j!}$的值$mod$ $10000000…
我太难了 先说好没有代码T1 题目大意: 给定一些形如|ax+b|的式子,求最小的x使得它们的和最小. 算法一: 大家知道零点分段法 对于这n个式子我们有n+1个取值范围 使得展开这n个式子得到的新式子不同 而对于每一个形成的式子,因为我们有这个x的取值范围,所以我们可以在O(1)的复杂度求出它的最小值. 而我们从最左边的取值范围开始,对于相邻的两个取值范围我们可以用O(1)的复杂度转移,即我们可以用O(n)遍历所有可能形成的n个式子,每个算一下答案即可. 需要注意的是,对于所有a[i]=0,我…
线段树上\(DP\) 首先发现,每个数肯定是向自己的前驱或后继连边的. 则我们开一棵权值线段树,其中每一个节点记录一个\(f_{0/1,0/1}\),表示在这个区间左.右端点是否连过边的情况下,使这个区间符合条件的最小代价. 合并时考虑如果左儿子的右端点或右儿子的左端点中有一个没有连过边,就必须连边,否则就不连边. 然后我的写法比较蠢,不知道为什么当左右儿子中某个节点只有一个数时需要特判处理. 最后答案就是根节点的\(f_{1,1}\). 具体详见代码. 代码 #include<bits/std…
设阈值 考虑对于询问的\(d\)设阈值进行分别处理. 对于\(d\le\sqrt{max\ d}\)的询问,我们可以\(O(n\sqrt{max\ d})\)预处理答案,\(O(1)\)输出. 对于\(d>\sqrt{max\ d}\)的询问,我们可以爆枚其倍数.然后就变成询问一个区间内一些数的个数,可以考虑用莫队.考虑到移动和询问的根号是分开计算的,所以复杂度是\(O(q(\sqrt n+\sqrt{max\ d}))\). 代码 #include<bits/stdc++.h> #de…