Paper | Squeeze-and-Excitation Networks】的更多相关文章

目录 黄高老师190919在北航的报告听后感 故事背景 网络结构 Dense block DenseNet 过渡层 成长率 瓶颈层 细节 实验 发表在2017 CVPR. 摘要 Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between…
论文:Deep Neural Networks for YouTube Recommendations 发表时间:2016 发表作者:(Google)Paul Covington, Jay Adams, Emre Sargin 发表刊物/会议:RecSys 论文链接:论文链接 这篇论文是google的YouTube团队在推荐系统上DNN方面的尝试,发表在16年9 月的RecSys会议.本文就focus在YouTube视频推荐的DNN算法,文中不但详细介绍了Youtube推荐算法和架构细节,还给了…
发表时间:2013 发表作者:(Google)Szegedy C, Toshev A, Erhan D 发表刊物/会议:Advances in Neural Information Processing Systems(NIPS) 本文实现了一种利用DNN来做目标检测的方法.当时,CNN等深度学习在识别上面做的还挺好,但是在目标检测上面没有特别突出的结果.本文中作者把目标检测看做一个回归问题,回归目标窗口(BoundingBox)的位置,寻找一张图片当中目标类别和目标出现的位置. 作者在Imag…
一下摘自:https://blog.csdn.net/Fire_Light_/article/details/79602705 论文链接:ArcFace: Additive Angular Margin Loss for Deep Face Recognition 作者开源代码:https://github.com/deepinsight/insightface 这篇论文原名是ArcFace,但是由于与虹软重名,后改名为Insight Face. 其实这篇论文可以看作是AmSoftmax的一种改…
Squeeze-and-Excitation Networks Paper 近些年来,卷积神经网络在很多领域都取得了巨大的突破.而卷积核作为卷积神经网络的核心,通常被看做是在局部感受野上,将空间上(spatial)的信息和特征维度上(channel-wise)的信息进行聚合的信息聚合体.卷积神经网络由一系列卷积层.非线性层和下采样层构成,这样它们能够从全局感受野上去捕获图像的特征来进行图像的描述. 然而去学到一个性能非常强劲的网络是相当困难的,其难点来自很多方面.最近很多工作呗提出来从空间维度层…
Momenta详解ImageNet 2017夺冠架构SENet 转自机器之心专栏 作者:胡杰 本届 CVPR 2017大会上出现了很多值得关注的精彩论文,国内自动驾驶创业公司 Momenta 联合机器之心推出 CVPR 2017 精彩论文解读专栏.除此之外,Momenta 还受邀在 CVPR 2017 的 ImageNet Workshop 中发表演讲,介绍 Momenta 在ImageNet 2017 挑战赛中夺冠的网络架构SENet.本文作者为 Momenta 高级研发工程师胡杰. 我是 M…
作者提出为了增强网络的表达能力,现有的工作显示了加强空间编码的作用.在这篇论文里面,作者重点关注channel上的信息,提出了"Squeeze-and-Excitation"(SE)block,实际上就是显式的让网络关注channel之间的信息 (adaptively recalibrates channel-wise feature responsesby explicitly modelling interdependencies between channels.).SEnets…
前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 <Self-Attention Generative Adversarial Networks>   https://arxiv.org/pdf/1805.08318v1.pdf 里边关键的还是注意力机制,又花了一个小时理解了下,感觉这种方式能够带来另一种视野的扩大,其中cnn是通过不断卷积扩大视野. 而…
论文原址:https://arxiv.org/abs/1709.01507 github:https://github.com/hujie-frank/SENet 摘要 卷积网络的关键构件是卷积操作,在每层感受野的范围内通过融合局部及channel-wise信息可以使网络构建特征.一些研究关注空间组件,通过增强空间特征等级的编码能力在增强表示力.本文重点在于通道之间的联系,提出了SENet block,通过对通道之间的独立性建模来自适应的调整通道之间的响应.可以将这些block进行堆叠得到SEN…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…