《机器学习技法》---对偶SVM】的更多相关文章

1.对偶问题的推导 为什么要求解对偶问题?一是对偶问题往往更容易求解,二是可以自然的引入核函数. 1.1 用拉格朗日函数将原问题转化为“无约束”等价问题 原问题是: 写出它的拉格朗日函数: 然后我们的原问题就等价为: 为什么可以这样等价: 即:对于不满足约束条件的(b,w),min里面趋于无穷大,因此min就把这些b,w舍去了:对于满足约束条件的解,min里面就刚好是原来的目标函数,刚好与原问题等价. 1.2 导出拉格朗日对偶问题 首先我们有如下成立: 然后我们取右边式子中的“best”阿尔法,…
1.对偶问题的推导 为什么要求解对偶问题?一是对偶问题往往更容易求解,二是可以自然的引入核函数. 1.1 用拉格朗日函数将原问题转化为"无约束"等价问题 原问题是: 写出它的拉格朗日函数: 然后我们的原问题就等价为: 为什么可以这样等价: 即:对于不满足约束条件的(b,w),min里面趋于无穷大,因此min就把这些b,w舍去了:对于满足约束条件的解,min里面就刚好是原来的目标函数,刚好与原问题等价. 1.2 导出拉格朗日对偶问题 首先我们有如下成立: 然后我们取右边式子中的"…
SVM迅速发展和完善,在解决小样本.非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,已经在许多领域(生物信息学,文本和手写识别等)都取得了成功的应用.在地球物理反演当中解决非线性反演也有显著成效,例如(SVM在预测地下水涌水量问题等). SVM中的一大亮点是在传统的最优化问题中提出了对偶理论,主要有最大最小对偶及拉格朗日对偶. SVM的关键在于核函数.低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间.但这个办法带来的困…
一.Linear Support Vector Machine 接下来的讨论假设数据都是线性可分的. 1.1 SVM的引入:增大对测量误差的容忍度 假设有训练数据和分类曲线如下图所示: 很明显,三个分类器都能够正确分类训练数据,但是哪一个的效果更好呢?直觉告诉我们第三个,为什么呢? 这是因为第三个的那些点离分割超平面的距离较远,这样能够容忍更大的噪声, 鲁棒性更强. 1.2 间隔最大化问题的建模 我们的目标是寻找分割超平面导致间隔最大化.形象的说我们定义分割超平面两边的点与分割超平面的最短距离为…
一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题.其学习策略是使间隔最大化,也就是常说的基于结构风险最小化寻找最优的分割超平面.SVM学习问题可以表示为凸优化问题,也可以转变为其对偶问题,使用SMO算法求解.线性SVM与LR有很多相似的地方,分类的准确性能也差不多,当数据量比较少时SVM可能会占据优势,但是SVM不方便应用于软分类(probabi…
dual svm 对偶SVM linear SVM 可以用二次规划方法解 xn通过非线性转换变成zn SVM配合非线性特征转换 透过large-margin降低模型复杂度 透过特征转换得到弯弯曲曲的边界 无限维度有没有可能 挺复杂的数学问题,有些问题略过,就好像hoeffding不等式…
1.前言 SVM(Support Vector Machine)是一种寻求最大分类间隔的机器学习方法,广泛应用于各个领域,许多人把SVM当做首选方法,它也被称之为最优分类器,这是为什么呢?这篇文章将系统介绍SVM的原理.推导过程及代码实践. 2.初识SVM 首先我们先来看看SVM做的是什么样的事,我们先看下面一张图 图中有三个分类实例,都将数据正确分类,我们直观上看,会觉得图中第三个效果会比较好,这是为什么呢?个人觉得人的直观感受更偏向于数据均匀对称的结构.当然,这只是直观感受,我们从专业的角度…
概述 支持向量机是一种二分类模型,间隔最大使它有别于感知机.支持向量机学习方法由简至繁的模型:线性可分支持向量机(linear support vector machine in linearly separable data),线性支持向量机(linear support vector machine),非线性支持向量机(non-linear support vector machine). 简单模型是复杂模型的基础,也是复杂模型的特殊情况.当训练数据线性可分的时候,通过硬间隔最大化(hard…
在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operatorname{s.t.} \ y_i(\mathbf{w}^T\mathbf{x_i}+b) \ge \delta, \ \ i=1,...,m \] 由于求解过程中,限制条件中的 \(\delta\) 对结果不产生影响,所以简单起见我们把 \(\delta\) 替换成 1.另外,为了之后求解的方便…
在学习SVM(Support Vector Machine) 支持向量机时,对于线性可分的分类样本求出的分类函数为: 其中,分类超平面可以表示为:…