今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问题,具体的话下面一起来看下吧. 原文:Deepfm: a factorization-machine based neural network for ctr prediction 地址:http://www.ijcai.org/proceedings/2017/0239.pdf 1.问题由来 1.1.背景…
本系列的第六篇,一起读论文~ 本人才疏学浅,不足之处欢迎大家指出和交流. 今天要分享的是另一个Deep模型NFM(串行结构).NFM也是用FM+DNN来对问题建模的,相比于之前提到的Wide&Deep(Google).DeepFM(华为+哈工大).PNN(上交)和之后会分享的的DCN(Google).DIN(阿里)等,NFM有什么优点呢,下面就走进模型我们一起来看看吧. 原文:Neural Factorization Machines for Sparse Predictive Analytic…
原论文:Deep learning over multi-field categorical data 地址:https://arxiv.org/pdf/1601.02376.pdf 一.问题由来 基于传统机器学习模型(如LR.FM等)的CTR预测方案又被称为基于浅层模型的方案,其优点是模型简单,预测性能较好,可解释性强:缺点主要在于很难自动提取高阶组合特征携带的信息,目前一般通过特征工程来手动的提取高阶组合特征.而随着深度学习在计算机视觉.语音识别.自然语言处理等领域取得巨大成功,其在探索特征…
计算广告领域中数据特点:    1 正负样本不平衡    2 大量id类特征,高维,多领域(一个类别型特征就是一个field,比如上面的Weekday.Gender.City这是三个field),稀疏 在电商领域,CTR预估模型的原始特征数据通常包括多个类别,比如[Weekday=Tuesday,Gender=Male, City=London, CategoryId=16],这些原始特征通常以独热编码(one-hot encoding)的方式转化为高维稀疏二值向量,多个域(类别)对应的编码向量…
大家好,我们今天继续来剖析一些推荐广告领域的论文. 今天选择的这篇叫做DeepFM: A Factorization-Machine based Neural Network for CTR Prediction,翻译过来就是DeepFM:一个基于深度神经网络的FM模型.这篇paper的作者来自哈工大和华为,不得不说在人工智能领域的很多论文都是国产的,作为从业者还是非常欣喜能看到这点的. 通过名字我们也能看得出来,今天的这篇paper本质上其实是FM模型的一个进阶或者说是优化版本.如果对FM模型…
https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏.购买等.本文以点击率(CTR)预估为例,介绍常用的CTR预估模型,试图找出它们之间的关联和演化规律. 数据特点 在电商领域,CTR预估模型的原始特征数据通常包括多个类别,比如[Weekday=Tuesday,Gender=Male, City=London, CategoryId=16],这些原始特…
1.CTR CTR预估是对每次广告的点击情况做出预测,预测用户是点击还是不点击. CTR预估和很多因素相关,比如历史点击率.广告位置.时间.用户等. CTR预估模型就是综合考虑各种因素.特征,在大量历史数据上训练得到的模型. CTR预估的训练样本一般从历史log.离线特征库获得. 样本标签相对容易,用户点击标记为1,没有点击标记为0.特征则会考虑很多,例如用户的人口学特征.广告自身特征.广告展示特征等.这些特征中会用到很多类别特征,例如用户所属职业.广告展示的IP地址等.一般对于类别特征会采样O…
https://blog.csdn.net/john_xyz/article/details/78933253 目录目录CTR预估综述Factorization Machines(FM)算法原理代码实现Field-aware Factorization Machines(FFM)算法原理代码实现Deep FM算法原理代码实现参考文献CTR预估综述点击率(Click through rate)是点击特定链接的用户与查看页面,电子邮件或广告的总用户数量之比. 它通常用于衡量某个网站的在线广告活动是否…
众所周知,深度学习在计算机视觉.语音识别.自然语言处理等领域最先取得突破并成为主流方法.但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像.语音.文本数据在空间和时间上具有一定的内在关联性.比如,图像中会有大量的像素与周围的像素比较类似:文本数据中语言会受到语法规则的限制.CNN对于空间特征有很好的学习能力,正如RNN对于时序特征有强大的表示能力一样,因此CNN和RNN在上述领域各领风骚好多年. 在Web-scale的搜索.推荐和广告系统中,特征数据具有高维.稀疏.多…
原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张伟楠博士在携程深度学习Meetup[1]上分享了Talk<Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction in Display Ads>.他在2016 ECIR发表…