Anton and School - 2 题解: 枚举每个左括号作为必选的. 那么方案数就应该是下面的 1 , 然后不断化简, 通过范德蒙恒等式 , 可以将其化为一个组合数. 代码: #include<bits/stdc++.h> using namespace std; #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdou…
Codeforces 785 D.Anton and School - 2 题目大意:从一串由"(",")"组成的字符串中,找出有多少个子序列满足:序列长度为偶数,且前n/2个为"(",后n/2个为")": 思路:枚举每一个左括号,则以该左括号为左右分界的子序列个数为∑C(L-1,i)C(R,i+1)(其中L为该左括号向左的左括号数,R为该左括号向右的右括号数,i从0累加到L-1).而∑C(L-1,i)C(R,i+1)=∑C(…
Codeforces 785 E. Anton and Permutation 题目大意:给出n,q.n代表有一个元素从1到n的数组(对应索引1~n),q表示有q个查询.每次查询给出两个数l,r,要求将索引为l,r的两个数交换位置,并给出交换后数组中的逆序对数. 思路:此题用到了分块的思想,即将这组数分为bsz块,在每一块上建Fenwick树,对于每次查询,只需要处理l,r中间的块和l,r所在块受影响的部分.具体实现见代码及注释. #include<iostream> #include<…
题目链接:http://codeforces.com/contest/785 A. Anton and Polyhedrons time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Anton's favourite geometric figures are regular polyhedrons. Note that there…
题意:给你一个由'('和')'组成的字符串,问你有多少个子串,前半部分是由'('组成后半部分由')'组成 思路:枚举这个字符串中的所有'('左括号,它左边的所有'('左括号的个数为num1,它的右边的所有')'右括号的个数为num2, 根据范德蒙恒等式计算得出 代码: #include <bits/stdc++.h> #define ll long long #define maxn 200000 #define mod 1000000007 using namespace std; ll j…
题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 "(",以及右边有 $y$ 个 ")",那么就有式子如下: ① 若 $x+1 \le y$:$C_{x}^{0} C_{y}^{1} + C_{x}^{1} C_{y}^{2} + \cdots + C_{x}^{x} C_{y}^{x+1} = \sum_{i=0}…
题目链接:http://codeforces.com/contest/785/problem/D 我们可以枚举分界点,易知分界点左边和右边分别有多少个左括号和右括号,为了不计算重复我们强制要求选择分界点左边的那一个左括号(也就是说如果枚举的这个分界点的左边这个位置没有左括号就强制这个位置不产生贡献). 对于一个分界点我们记它左边有$le[x]$个左括号,右边有$ri[x]$个右括号. ${Ans=\sum_{x=1}^{n-1} \sum _{i=1}^{min(le[x]-1,ri[x]])}…
链接:https://codeforces.com/contest/785 A - Anton and Polyhedrons #include<bits/stdc++.h> using namespace std; ; map<string,int> mp; int n,sum; string str; int main() { ios::sync_with_stdio(); cin.tie(), cout.tie(); mp.clear(); mp[; mp[; mp[; mp…
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k \le 9\) 几乎一下午和一晚上杠这道题...中间各种翻<具体数学>各种卡常 有两种做法,这里只说我认为简单的一种. 题目就是要求 \[ \sum_{i=0}^a \sum_{j=0}^b [i>j] \binom{a}{i} \binom{b}{j} \] 化一化得到 \[ \sum_{…
浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看过一点线性代数的应该都知道范德蒙德行列式. \[V(x_0,x_1,\cdots ,x_{n-1})=\begin{bmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{…