Tyvj 1953 Normal:多项式,点分治】的更多相关文章

Decription: 某天WJMZBMR学习了一个神奇的算法:树的点分治! 这个算法的核心是这样的: 消耗时间=0 Solve(树 a) 消耗时间 += a 的 大小 如果 a 中 只有 1 个点,退出;否则在a中选一个点x,在a中删除点x,那么a变成了几个小一点的树,对每个小树递归调用Solve. 我们注意到的这个算法的时间复杂度跟选择的点x是密切相关的. 如果x是树的重心,那么时间复杂度就是O(nlogn) 但是由于WJMZBMR比较傻逼,他决定随机在a中选择一个点作为x! Sevenkp…
[BZOJ3451]Normal (点分治) 题面 BZOJ 题解 显然考虑每个点的贡献.但是发现似乎怎么算都不好计算其在点分树上的深度. 那么考虑一下这个点在点分树中每一次被计算的情况,显然就是其在某个点的点分树内时才会被计算答案. 那么设\(p[i][j]\)表示\(i\)在\(j\)的点分树里面的概率. 那么答案就变成了\(\sum_i\sum_j p[i][j]\) 那么\(i\)在\(j\)的点分树的概率显然就是两点之间路径不被断开的概率,即\(\frac{1}{dis(i,j)+1}…
3451: Tyvj1953 Normal 题意: N 个点的树,点分治时等概率地随机选点,代价为当前连通块的顶点数量,求代价的期望值 百年难遇的点分治一遍AC!!! 今天又去翻了一下<具体数学>上的离散概率,对期望有了一点新认识吧. 本题根据期望的线性性质,计算每个点的代价期望加起来. 一个点v产生了代价,它在u选为中心时所在的cc里,并且(u,v)路径上没有其他点已经被选择.概率为\(\frac{1}{(u,v)之间包含u,v点的个数}\) 统计每种长度的路径有多少个 点分治+生成函数统计…
原文链接http://www.cnblogs.com/zhouzhendong/p/8847145.html 题目传送门 - CodeForces 553E 题意 一个有$n$个节点$m$条边的有向图,每条边连接了$a_i$和$b_i$,花费为$c_i$. 每次经过某一条边就要花费该边的$c_i$. 第$i$条边耗时为$j$的概率为$p_{i,j}$. 现在你从$1$开始走到$n$,如果你在$t$单位时间内(包括$t$)到了$n$,不需要任何额外花费,否则你要额外花费$x$. 问你在最优策略下的…
Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案. 好了, 这就是困扰阿狸的问题. 换句话说, 你需要求出n个点的…
题目 令\(f_i\)表示n个点的答案.考虑容斥,用所有连边方案减去有多个连通块的方案.枚举1号点所在的连通块大小: \(f_i=2^{i(i-1)/2}-\sum_{j>0}^{i-1}f_j \binom{i-1}{j-1}2^{(i-j)(i-j-1)/2}\) \(\binom{i-1}{j-1}\)表示1号点必须在选出的连通块中,剩下的i-1个点中再选出j-1个.\(2^{(i-j)(i-j-1)/2}\)是剩下的点随意连边,但不跟选出的连通块连边的方案数. \[\begin{alig…
基础 很久以前的多项式总结 现在的码风又变了... FFT和NTT的板子 typedef complex<double> C; const double PI=acos(-1); void FFT(C*a,R op){ for(R i=0;i<N;++i) if(i<r[i])swap(a[i],a[r[i]]); for(R i=1;i<N;i<<=1){ C wn=C(cos(PI/i),sin(PI/i)*op),w=1,t; for(R j=0;j<…
description 给定长度为\(n-1\)的数组\(g[1],g[2],..,g[n-1]\),求\(f[0],f[1],..,f[n-1]\),其中 \[f[i]=\sum_{j=1}^if[i-j]g[j]\] 边界为 \(f[0]=1\).答案模\(998244353\). analysis 一道分治\(NTT\)板题 经历过城市规划那题的洗礼之后这题变得微不足道 考虑\(CDQ\)分治,求出\([l,mid]\)对\([mid+r]\)的贡献 把\(f[l,mid]\)拉出来,与\…
众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个应该是多项式各种运算中的基础了. 首先,在学习多项式乘法之前,你需要学会: 复数 我们定义虚数单位 \(i\) 为满足 \(x^2=-1\) 的 \(x\). 那么所有的复数都可以表示为 \(z=a+bi\) 的形式,其中 \(a,b\) 均为实数. 复数的加减直接对实部虚部相加减就行了. 复数的乘…

FFT

void FFT(complex a[],int n,int fl){ ,j=n/;i<n;i++){ if (i<j) {complex t=a[i];a[i]=a[j];a[j]=t;}; int k; );j&k;j^=k,k>>=); j^=k; } ;i<=n;i<<=){ complex w;w.r=cos(fl**pi/i);w.i=sin(fl**pi/i); ;j<n;j+=i){ complex wi;wi.r=;wi.i=; ;…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1402 一般的的大数乘法都是直接模拟乘法演算过程,复杂度O(n^2),对于这题来说会超时.乘法的过程基本就是等同于多项式相乘的过程,只是没有进位而已.对于这种问题我们需要转化然后用FFT求解.FFT是用来计算离散傅里叶变化(DFT)及其逆变换(IDFT)的快速算法,复杂度O(n*logn).DFT有一个很重要的性质:时域卷积,频域乘积:频域乘积,时域卷积.那么什么是时域.频域.卷积.乘积呢?时域和频域…
几周前搞了搞--有点时间简要整理一下,诸多不足之处还请指出. 有哪些需要理解的地方? 点值表示:对于多项式 \(A(x)\),把 \(n\) 个不同的 \(x\) 代入,会得出 \(n\) 个不同的 \(y\),在坐标系内就是 \(n\) 个不同的点,那么这 \(n\) 个点唯一确定该多项式 为什么引入单位根 \(\omega\) 作为变量 \(x\):若代入一些 \(x\) ,使每个 \(x\) 的若干次方等于 \(1\),就不用做全部的次方运算了 单位根的性质:于是可以分治实现 \(FFT\…
FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a_0+a_1x+a_2x^2\) \(f(x)=b_0+b_1x+b_2x^2\) 他们的乘积c(x)就是 \(c(x)=a_0b_0+a_0b_1x+a_0b_2x^2+a_1b_0x+a_1b_1x^2+a_1b_2x^3+a_2b_0x^2+a_2b_1x^3+a_2b_2x^4\) c(x)…
OI常用的数学知识总结 本文持续更新…… 总结一下OI中的玄学知识 先列个单子,(from秦神 数论 模意义下的基本运算和欧拉定理 筛素数和判定素数欧几里得算法及其扩展[finish] 数论函数和莫比乌斯反演 斐波那契数列及其性质 卡特兰数(在组合) 快速幂 离散对数和大步小步 二次剩余 原根 中国剩余定理 Pollard@Rho Farey序列 勾股数生成公式 群论 置换的定义及运算 Burnside引理以及Pólya定理 基于置换群的贪心 组合数学 组合数及其求法 [finish] 组合数取…
我尽力写一篇比较详细的题解.... LOJ 6240. 仙人掌 我先来给你安利一个题 [BZOJ3451]Tyvj1953 Normal (DSU/点分治+NTT/FFT) 同样的,我们计算每一个点对对于答案的贡献 借一下别人严谨的分析 我们分析这个所谓可以\(O(n^3)\)实现的dp (下文提到路径是指经过路径上的树边和环边) 定义\(dp[i][j]\)当前根时,\(i\)到根节点的路径上所有经过的点中有\(j\)个点在根节点前面被选的合法方案数 记根到\(i\)的路径上经过的点个数为\(…
自闭集训 Day7 动态规划 LOJ6395 首先发现这个树的形态没啥用,只需要保证度数之和是\(2n-2\)且度数大于0即可. 然后设\(dp_{i,j}\)表示前\(i\)个点用了\(j\)个度数的最小值,然后就获得了\(O(n^3)\)的DP. 不妨每个点的度数都减1,那么总度数就变成\(n-2\)了. 考虑原来\(i\)的作用是什么:要限制选的点数不能超过\(n​\). 此时我们总度数小于\(n\),所以只要度数不为0的点的总度数不超过n-2那么就肯定有点数不超过n.所以我们可以先认为所…
https://blog.csdn.net/enjoy_pascal/article/details/81478582 FFT前言快速傅里叶变换 (fast Fourier transform),即利用计算机计算离散傅里叶变换(DFT)的高效.快速计算方法的统称,简称FFT.快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的.采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著. FFT(Fast Fourier…
引入 什么是 \(\text{FFT}\) ? 反正我看到 \(\text{wiki}\) 上是一堆奇怪的东西. 快速傅里叶变换(英语:Fast Fourier Transform, FFT),是快速计算序列的离散傅里叶变换(DFT)或其逆变换的方法.傅里叶分析将信号从原始域(通常是时间或空间)转换到频域的表示或者逆过来转换.FFT会通过把DFT矩阵分解为稀疏(大多为零)因子之积来快速计算此类变换.-- \(\text{wikipedia}\) 反正我没脑子我看不懂. 对我来说,\(\text{…
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3451.html 题目传送门 - BZOJ3451 题意 给定一棵有 $n$ 个节点的树,在树上随机点分治,问消耗时间的期望. 计算点分治耗时由如下函数给出: Time = 0 Solve( T ){ Time += |T| if ( |T| = 1 ) then return ; x = 一个随机节点 in T for y in {与 x 直接连边的节点 in T} do Solve( SubTre…
[BZOJ3451]Normal(点分治+FFT) 题面 给你一棵 n个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心.定义消耗时间为每层分治的子树大小之和,求消耗时间的期望. 分析 根据期望的线性性,答案是\(\sum_{i=1}^n(i的期望子树大小)=\sum_{i=1}^n \sum_{j=1}^n [j在i的点分治子树内]\) 考虑j在i的点分治子树内的条件,显然i到j的路径上的所有点中,i是第一个被选择为分治中心的.否则如果选的点不是i,那么i和j会被分到两棵子树中.第一…
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治fft 注意过程中把r-l+1当做次数界就可以了,因为其中一个向量是[l,mid],我们只需要[mid+1,r]的结果. 多项式求逆 变成了 \[ A(x) = \frac{f_0}{1-B(x)} \] 的形式 要用拆系数fft,直接把之前的代码复制上就可以啦 #include <iostream…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
题目描述 在一个 \(n\) 个点的有向图中,编号从 \(1\) 到 \(n\),任意两个点之间都有且仅有一条有向边.现在已知一些单向的简单路径(路径上任意两点各不相同),例如 \(2\to 4\to 1\).且已知的这些简单路径之间没有公共的顶点,其 余的边的方向等概率随机. 你需要求出强连通分量(如果同时存在 \(a\) 到 \(b\), \(b\) 到 \(a\) 的有向路径,则 \(a\), \(b\) 属于同一个强联通分量) 的期望个数.如果最后答案是 \(\frac{A}{B}\),…
原文链接http://www.cnblogs.com/zhouzhendong/p/8835443.html 题目传送门 - CodeForces 958F3 题意 有$n$个球,球有$m$种颜色,分别编号为$1\cdots m$,现在让你从中拿$k$个球,问拿到的球的颜色所构成的可重集合有多少种不同的可能. 注意同种颜色球是等价的,但是两个颜色为$x$的球不等价于一个. $1\leq n\leq 2\times 10^5,\ \ \ \ \ 1\leq m,k\leq n$. 题解 来自Hel…
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ23.html 题目传送门 - UOJ#23 题意 给定一个有 n 个节点的仙人掌(可能有重边). 对于所有的 $L(1\leq L\leq n-1)$ ,求出有多少不同的从节点 1 出发的包含 L 条边的简单路径.简单路径是指不重复经过任意一点. $n\leq 10^5$ 题解 首先我们把走一条边看作多项式 $x^1$ ,那么一条长度为 L 的路径就是其路径上的多项式的乘积. 接下来称“环根”为距离节点…
官方题解:http://codeforces.com/blog/entry/54233 就是由简入繁 1.序列处理,只考虑一个半圆 2.环形处理(其实这个就是多了旋转同构) 然后基于分割线邻居的跨越与否,分类讨论 g->没有分割线方案数(其实也可以变成贡献,但是太简单,之后乘上(i+0/1/2)也方便) f0->有分割线,两边都没有选所有情况的贡献的和 f1->有分割线,两边选择了一个所有情况的贡献的和 f2->有分割线,两边都选择了所有情况的贡献的和 最后对于环 考虑除了中间割线…
前言 多项式求逆还是爽的一批 Solution 考虑分治求解这个问题. 直接每一次NTT一下就好了. 代码实现 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<algorithm> #include<queue> #include<iostream> using namespace std; #define…
目录 问题提出 求逆代替分治 代码实现 由于我懒得不想学蠢得学不会分治 \(\text{FFT}\) ,发现可以用多项式求逆来完整地代替... 文章节选自分治 FFT 与多项式求逆,转载方便自己查看.更多多项式求逆和分治 \(\text{FFT}\) 的内容与联系,可参见原博客. 问题提出 给定 \(\forall i\in[1,n),g[i]\),求递推式 \[f[i]=\begin{cases}1 & \text{ if } i=0 \\ \sum_{j=1}^if[i-j]g[j] &…
题目描述 给你一棵 $n$ 个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心.定义消耗时间为每层分治的子树大小之和,求消耗时间的期望. 输入 第一行一个整数n,表示树的大小接下来n-1行每行两个数a,b,表示a和b之间有一条边注意点是从0开始标号的 输出 一行一个浮点数表示答案四舍五入到小数点后4位如果害怕精度跪建议用long double或者extended 样例输入 30 11 2 样例输出 5.6667 题解 期望+树的点分治+FFT 由于期望可加,因此所求等于 $\sum\l…