使用R语言预测产品销量】的更多相关文章

使用R语言预测产品销量 通过不同的广告投入,预测产品的销量.因为响应变量销量是一个连续的值,所以这个问题是一个回归问题.数据集共有200个观测值,每一组观测值对应一种市场情况. 数据特征 TV:对于一个给定市场的单一产品,用于电视上的广告费用(以千为单位) Radio:用于广告媒体上投资的广告费用 Newspaper:用于报纸媒体上的广告费用 响应 Sales:对应产品的销量 加载数据 > data <- read.csv("http://www-bcf.usc.edu/~garet…
预测流程 确定主题.指标.主体.精度.周期.用户.成本和数据七要素. 收集数据.内容划分.收集原则. 选择方法.主要方法有自相关分析.偏相关分析.频谱分析.趋势分析.聚类分析.关联分析.相关分析.互相关分析.典型相关分析.对应分析等. 分析规律.常见的规律有趋势性.周期性.波动性.相关性.相似性.项关联性.段关联性. 建立模型.特征构建.特征选择.算法选择(可理解性.性能.数据要求).构建模型(分割数据集).测试模型.模型优化.评估效果.发布模型. 分析方法 自相关分析,同一时间序列在不同时刻的…
本例使用forecast包中自带的数据集wineind,它表示从1980年1月到1994年8月, 由葡萄酒生产商销售的容量不到1升的澳大利亚酒的总量.数据示意如下: #观察曲线簇 len=1993-1980+1 data0=wineind[1:12*len] range0=range(data0)+c(-100,100) plot(1:12,1:12,ylim=range0,col='white',xlab="月份",ylab="销量") for(i in 1:le…
2.1预测流程 从确定预测主题开始,一次进行数据收集.选择方法.分析规律.建立模型.评估效果直到发布模型. 2.2.1确定主题 (1)指标:表达的是数量特征,预测的结果也通常是通过指标的取值来体现. (2)主体:预测研究的对象. (3)精度:预测能够达到的准确水平. (4)周期:在预测工作开始前,需要明确预测结果的时间跨度,或叫做周期. (5)用户: (6)成本: (7)数据: 2.1.2收集数据 内容划分 收集原则 :全面覆盖.质量良好.周期一致.粒度(粒度可以理解为事物的层次)对称.持续生产…
特征构建技术 特征变换,对原始的某个特征通过一定的规则或映射得到新特征的方法,主要方法包括概念分层.标准化.离散化.函数变换以及深入表达.特征变换主要由人工完成,属于比较基础的特征构建方法. 概念分层,缩减离散数据的方法,比如分段. 标准化,即无量纲处理.有线性标准化(极差标准化.z-score标准化[正态分布].小数定标标准化).非线性标准化(对数标准化.小数标准化[可能还会有什么指数标准化?]) 离散化(分箱法[按某规则存放在不同的箱中,课以按数量和区间分],熵离散法[没搞懂]),规则离散法…
本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题.学习者不知道从哪开始,如何进行,选择什么学习资源.虽然网络上有许多不错的免费学习资源,然而它们多过了头,反而会让人挑花了眼. 为了构建R语言学习方法,我们在Vidhya和DataCamp中选一组综合资源,帮您从头学习R语言.这套学习方法对于数据科学或R语言的初学者会很有用;如果读者是R语言的老用户,则会由本文了解这门语言的部分最新成果. R语言学习方法会帮助您快速.高效学习R语言. 前言 在开始学习之前…
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 -------------------------------------------------- 一.XGBoost来历 xgboost的全称是eXtreme Gradient Boosting.正如其名,它是Gradient Boosting Machine的一个c++实现,作者为正在华盛顿大学研究机器学习的大牛陈天奇.他在研究中深感自己受制于现有库的计…
数据来源: R语言自带 Nile 数据集(尼罗河流量) 分析工具:R-3.5.0 & Rstudio-1.1.453 #清理环境,加载包 rm(list=ls()) library(forecast) library(tseries) #趋势查看 plot(Nile) #平稳性检验 #自相关图 acf(Nile) #偏相关图 pacf(Nile) #也可以直接用tsdisplay查看 tsdisplay(Nile) #单位根检验 adf.test(Nile) 从自相关图上看,自相关系数没有快速衰…
预测分析建模 Python与R语言实现 目录 前言 第1章 分析与数据科学1第2章 广告与促销10第3章 偏好与选择24第4章 购物篮分析31第5章 经济数据分析42第6章 运营管理56第7章 文本分析72第8章 情感分析93第9章 体育分析132第10章 空间数据分析146第11章 品牌和价格165第12章 大型的小数字游戏188附录A 数据科学方法191附录B 测量方法204附录C 案例研究212附录D 编码和脚本226参考文献259 下载地址:https://pan.baidu.com/s…
R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率.我们通常会基于ROC曲线计算处于曲线下方的面积AUC(area under curve),并以此峰面积来衡量相应分类模型的性能. 操作 继续使用telecom churn数据集作为样例数据集 library(caret) data(churn) str(churnTrain) churnTrain = churnTrain[,!names(…