有这样一个场景,在HBase中需要分页查询,同时根据某一列的值进行过滤. 不同于RDBMS天然支持分页查询,HBase要进行分页必须由自己实现.据我了解的,目前有两种方案, 一是<HBase权威指南>中提到的用PageFilter加循环动态设置startRow实现,详细见这里.但这种方法效率比较低,且有冗余查询.因此京东研发了一种用额外的一张表来保存行序号的方案. 该种方案效率较高,但实现麻烦些,需要维护一张额外的表. 不管是方案也好,人也好,没有最好的,只有最适合的.在我司的使用场景中,对于…
[TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streaming进行实时的数据流处理时,我需要将计算好的数据更新到hbase和mysql中,所以本文对spark操作hbase和mysql的内容进行总结,并且对自己踩到的一些坑进行记录. Spark Streaming持久化设计模式 DStreams输出操作 print:打印driver结点上每个Dstream…
https://cloud.tencent.com/developer/article/1004820 Spark 踩坑记:数据库(Hbase+Mysql) 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值. 最近一个实时消费者处理任务,在使用spark streaming进行实时的数据流处理时,我需要将计算好的数据更新到hbase和mysql中,所以本文对spark操作hbase和mysql的内容进行总结,并且对自己…
转自:http://www.cnblogs.com/xlturing/p/spark.html 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streaming进行实时的数据流处理时,我需要将计算好的数据更新到hbase和mysql中,所以本文对spark操作hbase和mysql的内容进行总结,并且对自己踩到的一些坑进行记录. Spark Streaming持久化设计…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
[TOC] 前言 Spark踩坑记--初试 Spark踩坑记--数据库(Hbase+Mysql) Spark踩坑记--Spark Streaming+kafka应用及调优 在前面总结的几篇spark踩坑博文中,我总结了自己在使用spark过程当中踩过的一些坑和经验.我们知道Spark是多机器集群部署的,分为Driver/Master/Worker,Master负责资源调度,Worker是不同的运算节点,由Master统一调度,而Driver是我们提交Spark程序的节点,并且所有的reduce类…
[TOC] 前言 在Spark的使用中,性能的调优配置过程中,查阅了很多资料,之前自己总结过两篇小博文Spark踩坑记--初试和Spark踩坑记--数据库(Hbase+Mysql),第一篇概况的归纳了自己对spark的初步尝试,第二篇更多是局部在spark对于数据库的操作,而本文的思路是从spark最细节的本质,即核心的数据结构RDD出发,到整个Spark集群宏观的调度过程做一个整理归纳,从微观到宏观两方面总结,方便自己在调优过程中找寻问题,理清思路,也加深自己对于分布式程序开发的理解.(有任何…
前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计. 本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka 在舆情项目中的应用,最后将自己在Spark Streaming+kafka 的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补…
本次遇到的问题描述,日志采集同步时,当单条日志(日志文件中一行日志)超过2M大小,数据无法采集同步到kafka,分析后,共踩到如下几个坑.1.flume采集时,通过shell+EXEC(tail -F xxx.log 的方式) source来获取日志时,当单条日志过大超过1M时,source端无法从日志中获取到Event.2.日志超过1M后,flume的kafka sink 作为生产者发送给日志给kafka失败,kafka无法收到消息.以下针对踩的这两个坑做分析,flume 我使用的是1.9.0…
项目里面的一个分表用到了sharding-jdbc 当时纠结过是用mycat还是用sharding-jdbc的, 但是最终还是用了sharding-jdbc, 原因如下: 1. mycat比较重, 相对于sharding-jdbc只需导入jar包就行, mycat还需要部署维护一个中间件服务.由于我们只有一个表需要分表, 直接用轻量级的sharding-jdbc即可. 2. mycat作为一个中间代理服务, 难免有性能损耗 3. 其他组用mycat的时候出现过生产BUG 然而sharding-j…