已更新(2/3):st表.树状数组 st表.树状数组与线段树是三种比较高级的数据结构,大多数操作时间复杂度为O(log n),用来处理一些RMQ问题或类似的数列区间处理问题. 一.ST表(Sparse Table) st表预处理时间复杂度O(n log n),查询O(1),但不支持在线更改,否则要重新进行预处理. 使用一个二维数组:st[i][j]存储i为起点,长度为2j的一段区间最值,即arr[i, i + 2j - 1]. 具体步骤(以最小值为例): 将st[i][0]赋值为arr[i];…
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Status] Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. Input 第一行N,M接下来M行,每行形如1 a b c或2 a b…
题目链接:BZOJ - 3196 题目分析 区间Kth和区间Rank用树状数组套线段树实现,区间前驱后继用线段树套set实现. 为了节省空间,需要离线,先离散化,这样需要的数组大小可以小一些,可以卡过128MB = = 嗯就是这样,代码长度= =我写了260行......Debug了n小时= = 代码 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #in…
题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻烦好多...我容易写错= = 代码 树状数组套线段树 #include <iostream> #include <cstdlib> #include <cstdio> #include <cmath> #include <algorithm> #in…
偶然发现这题还没A掉............速速解决了............. 树状数组和线段树比较下,线段树是在是太冗余了,以后能用树状数组还是尽量用......... #include <iostream> #include <algorithm> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <strin…
[BZOJ3196]二逼平衡树(树状数组,线段树) 题面 BZOJ题面 题解 如果不存在区间修改操作: 搞一个权值线段树 区间第K大--->直接在线段树上二分 某个数第几大--->查询一下区间的size和 某个数的前缀--->先查一下他是区间第几大,再求他-1大 某个数的后缀--->和上面那个有区别吗??? 现在有了区间修改操作 多搞一个树状数组 套在一起就好啦 暴力开点开不下的 要动态开点 #include<iostream> #include<cstdio&g…
题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[j]<=minv[i]&&maxv[j]<=a[i])//序列只会变换一次 dp[i]=max{dp[j]+1}; 转移要满足两个条件:\(a[j]<=minv[i]\ \&\&\ maxv[j]<=a[i]\) 一个二维偏序问题,CDQ.树套树都可以.…
P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处理:从左到右求一次,再倒过来求一次,用2个数组存起来. 但是前面已经删除的元素与当前删除元素组成的逆序对会被重复计数. 于是考虑再减去重复计数 我们用树状数组套线段树(动态开点): 第$i$棵线段树 储存 每个位置在$i$之前的被删除元素 蓝后每次查询时左边右边找一找 把它们加回来就好辣 #incl…
Jam's problem again Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 640    Accepted Submission(s): 210 Problem Description Jam like to solve the problem which on the 3D-axis,given N(1≤N≤100000)…
题意概述:带修改求区间第k大. 分析: 我们知道不带修改的时候直接上主席树就可以了对吧?两个版本号里面的节点一起走在线段树上二分,复杂度是O((N+M)logN). 然而这里可以修改,主席树显然是凉了,但是注意到主席树的不带修改做法实际上是利用的差分的性质,即主席树本身实际上就是维护的一个前缀和一样的东西.想想普通的前缀和问题,我们求带修改前缀和是怎么做的?树状数组!于是我们用树状数组套线段树,树状数组里面每个点是一棵权值线段树,维护的是位置i前面lowbit(i)范围中的元素的权值信息,每一次…