Hall定理 二分图完美匹配】的更多相关文章

充分性证明就先咕了,因为楼主太弱了,有一部分没看懂 霍尔定理内容 二分图G中的两部分顶点组成的集合分别为X, Y(假设有\(\lvert X \rvert \leq \lvert Y \rvert\)).G中有一组无公共点的边,一端恰好为组成X的点(也就是存在完美匹配)的充分必要条件是:X中的任意k个点至少与Y中的k个点相邻,即对于X中的一个点集W ,令N(W)为W的所有邻居, 霍尔定理即对于任意W,\(\lvert W\rvert \leq \lvert N(W)\rvert\) 证明 1.必…
题意:每个蚁群有自己的食物源(苹果树),已知蚂蚁靠气味辨别行进方向,所以蚁群之间的行动轨迹不能重叠.现在给出坐标系中n个蚁群和n棵果树的坐标,两两配对,实现以上要求.输出的第 i 行表示第 i 个蚁群应该去哪棵果树.(已知2*n个点互不重合) 容易想到二分完美匹配,但究竟以什么为权值?需要利用一个关系:两条线段如果相交,那么线段长度之和必然大于其四个点不相交的连法对应的线段长度之和.(利用三角不等式可以证明). 如此,求出每个蚁群到每棵果树的曼哈顿距离,只要保证每条匹配边的长度最短,即长度之和最…
UVA 1411 - Ants 题目链接 题意:给定一些黑点白点,要求一个黑点连接一个白点,而且全部线段都不相交 思路:二分图完美匹配,权值存负的欧几里得距离,这种话,相交肯定比不相交权值小,所以做一次完美匹配就能够了 代码: #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int MAXNODE = 1…
UVA 11383 - Golden Tiger Claw 题目链接 题意:给定每列和每行的和,给定一个矩阵,要求每一个格子(x, y)的值小于row(i) + col(j),求一种方案,而且全部行列之和的和最小 思路:A二分图完美匹配的扩展,行列建二分图,权值为矩阵对应位置的值,做一次KM算法后.全部顶标之和就是最小的 代码: #include <cstdio> #include <cstring> #include <cmath> #include <algo…
UVA 10888 - Warehouse option=com_onlinejudge&Itemid=8&page=show_problem&category=562&problem=1829&mosmsg=Submission+received+with+ID+14222079" target="_blank" style="">题目链接 题意:就是推箱子游戏,问最少要几步 思路:每一个箱子和目标位置建边.…
题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之和最小的方案. 当看到w(i,j)<=row(i)+col(j),并且row()col()都是自己构造的时候,就想到了二分匹配:w[i,j]<=Lx[i]+Ly[j].直接套用模板,求最佳二分完美匹配,输出Lx[],Ly[],以及最小值即可. #include<cstdio> #inc…
基本概念 二分图有两个种点:X和Y.X与Y之间存在一些边,每个边有一个权值.现要求求一组X与Y间的通过边实现的一一匹配,使得得到的边权和最大. 总体过程 对每个X节点设置一个顶标Xl,初值为与X相邻的边的权值最大值:Y节点设置一个顶标Yl,初值为0.当前情况下,如果Xl[x]+Yl[x]==weight[x][y],则此时的边(x,y)为可匹配边.weight[x][y]越接近Xl[x]+Yl[y],则边(x,y)越有可能为匹配边. 枚举每一个X,对以下步骤循环:对于当前图所有可匹配的边所形成的…
先orz litble--KM算法 为什么要用KM算法 因为有的题丧心病狂卡费用流 KM算法相比于费用流来说,具有更高的效率. 算法流程 我们给每一个点设一个期望值[可行顶标] 对于左边的点来说,就是期望能匹配到多大权值的右边的点 对于右边的点来说,就是期望能在左边的点的期望之上还能产生多少贡献 两个点能匹配,当且仅当它们的期望值之和为这条边的权值 一开始初始化所有左点的期望是其出边的最大值,因为最理想情况下当然是每个点都匹配自己能匹配最大的那个 右点期望为0 然后我们逐个匹配,当一个点匹配失败…
大意: n中贷款, 每种只能买一次, 第$i$种给$a_i$元, 要还款$k_i$个月, 每个月底还$b_i$元. 每个月可以在月初申请一种贷. 求某一时刻能得到的最大钱数.…
[CF981F]Round Marriage(二分答案,二分图匹配,Hall定理) 题面 CF 洛谷 题解 很明显需要二分. 二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理. 那么如果不合法,假设我们存在一个极小的集合满足连到右侧的点数小于集合大小.因为是极小的,所以删去一个点之后就可以匹配,那么意为着某个点连出去的点和其他所有点有交,既然有交,那么一定这一段区间都可以加入进来形成一个不合法的集合.所以我们可以把存在一个点集不合法变成存在一段连续区间不合法. 假设每个点连向另外一…