[翻译] Tensorflow模型的保存与恢复】的更多相关文章

翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ 在这篇tensorflow教程中,我会解释: 1) Tensorflow的模型(model)长什么样子? 2) 如何保存tensorflow的模型? 3) 如何恢复一个tensorflow模型来用于预测或者迁移学习? 4) 如何使用预训练好的模型(imported pretrained model…
1.tensorflow中模型的保存 创建tf.train.saver,使用saver进行保存: saver = tf.train.Saver() saver.save(sess, './trained_variables.ckpt', global_step=1000) 1.1.在保存时需要注意参数在创建时需要传入name参数,读取参数时凭借name属性读取. def weight_variable(shape, name): initial = tf.truncated_normal(sha…
转自 https://www.cnblogs.com/zerotoinfinity/p/10242849.html 一.模型的保存 使用tensorflow训练模型的过程中,需要适时对模型进行保存,以及对保存的模型进行restore,以便后续对模型进行处理.如:测试.部署.拿别的模型进行fine-tune等. 保存模型是整个内容的第一步,操作十分简单,只需要创建一个saver,并在一个Session里完成保存. saver = tf.train.Saver() with tf.Session()…
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver() 在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型.如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置…
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver() 在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型.如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置…
模型的保存 tf.train.Saver(var_list=None,max_to_keep=5) •var_list:指定将要保存和还原的变量.它可以作为一个 dict或一个列表传递. •max_to_keep:指示要保留的最近检查点文件的最大数量. 创建新文件时,会删除较旧的文件.如果无或0,则保留所有 检查点文件.默认为5(即保留最新的5个检查点文件.) saver = tf.train.Saver() saver.save(sess, "") 模型的恢复 恢复模型的方法是res…
Tensorflow:模型变量保存 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 python3.5.0 Tensorflow常用保存模型方法 import tensorflow as tf saver = tf.train.Saver() # 创建保存器 with tf.Session() as sess: saver.save(sess,"/path/model.ckpt"…
1.模型的保存: import tensorflow as tf v1 = tf.Variable(1.0,dtype=tf.float32) v2 = tf.Variable(2.0,dtype=tf.float32) x = v1 + v2 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) result = sess.run(x) #将模型保存在mod…
1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: 这是一个协议缓冲区(protocol buffer),它完整地保存了Tensorflow图:即所有的变量.操作.集合等.此文件以 .meta 为拓展名. b) Checkpoint 文件: 这是一个二进制文件,包含weights.biases.gradients 和其他所有变量的值.此文件以 .ck…
模型的保存与加载一般有三种模式:save/load weights(最干净.最轻量级的方式,只保存网络参数,不保存网络状态),save/load entire model(最简单粗暴的方式,把网络所有的状态都保存起来),saved_model(更通用的方式,以固定模型格式保存,该格式是各种语言通用的) 具体使用方法如下: # 保存模型 model.save_weights('./checkpoints/my_checkpoint') # 加载模型 model = keras.create_mod…