经过比拼,AlphaGo最终还是胜出,创造了人机大战历史上的一个新的里程碑.几乎所有的人都在谈论这件事情,这使得把“人工智能”.“深度学习”的热潮推向了新的一个高潮.AlphaGo就像科幻电影里具有人的思维和情感的机器人一样,被极大地神话了,而且这让更多的人对人工智能产生了畏惧感.那么,AlphaGo的胜利真的意味着人工智能(AI)已经超越人类了吗? 答案肯定是No. AlphaGo仍只是个机器,之所以它能够战胜李世石是完全依靠它强大的运算能力和模仿能力,但本身并不具备人类拥有的智慧.面对新的规…
前言: 本篇文章主要讲解的是在学习人工智能之深度学习时所学到的知识和需要的环境配置(安装Anaconda3和TensorFlow2步骤详解),以及个人的心得体会,汇集成本篇文章,作为自己深度学习的总结与笔记. 内容主要是人工智能和深度学习的简介.环境配置和简单的python实例演示. 对于刚了解人工智能基本常识和具有Python基础的人,再来看本篇文章,就会对人工智能之深度学习有种豁然开朗的感觉,也是对人工智能学习的一种进阶. PS:开发工具包在文章末尾,有需要或者有问题可以评论区留言讨论 一.…
Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms are a subset of the machine learning algorithms, which aim at discovering multiple levels of distributed representations. Recently, numerous deep learni…
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版本 二次代价函数 sigmoid函数 交叉熵代价函数 对数释然代价函数 拟合 防止过拟合 Dropout 优化器 优化器的使用 如何提升准确率? 1.改每批训练多少个 2.改神经网络中间层(神经元层数,每层的个数,每层用的激活函数,权重的初值用随机正态.要不要防止过拟合) 3.改计算loss的函数:…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
本文开始要写作的时候,翻译圈里出了一个“爆炸性”的事件.6月27日下午,一个同传译员在朋友圈里爆料:某AI公司请这位译员去“扮演”机器同传,制造人工智能取代人工同传的“震撼”效果. 这个事件瞬间在译员群体的朋友圈.微博.微信群引爆了隐忍已久的火药桶.因为过去几个月来,隔三差五就冒出一个号称要取代同声传译的翻译机,尤其是一篇题为<刚刚宣告:同声传译即将消亡!>的微信文章,在六月下旬铺天盖地的充满了一堆有关的或者无关的公众号,不知道带来了几个10万+.几乎每个翻译行业的从业者,都收到了朋友略带同情…
序 "我不想要一份完整的报告,只要给我一份结果摘要就好".我经常发现自己处于这种状况 -- 无论是在大学里还是在我的职业生涯中.我们准备一份全面的报告,但老师/主管却只有时间阅读摘要. 听起来很熟悉吧?嗯,我决定做点什么.手动将报告转换为汇总版本太耗时了,对吗?我能依靠吗 自然语言处理 (NLP) 帮助我的技巧? 这就是使用深度学习进行文本摘要真正帮助我的地方.它解决了一个一直困扰我的问题- 现在我们的模型可以理解整个文本的上下文 .对于我们所有需要快速知道文件摘要的人来说,这是一个梦…
去年11月,一篇名为<Playing Atari with Deep Reinforcement Learning>的文章被初创人工智能公司DeepMind的员工上传到了arXiv网站.两个月之后,谷歌花了500万欧元买下了DeepMind公司,而人们对这个公司的了解仅限于这篇文章.近日,Tartu大学计算机科学系计算神经学小组的学者在robohub网站发表文章,阐述了他们对DeepMind人工智能算法的复现. 在arXiv发表的原始论文中,描述了一个单个的网络,它能够自我学习从而自动的玩一些…
https://mp.weixin.qq.com/s/NIza8E5clC18eMF_4GMwDw 深度学习的“深度”层面源于输入层和输出层之间实现的隐含层数目,隐含层利用数学方法处理(筛选/卷积)各层之间的数据,从而得出最终结果.在视觉系统中,深度(vs.宽度)网络倾向于利用已识别的特征,通过构建更深的网络最终来实现更通用的识别.这些多层的优点是各种抽象层次的学习特征. 在未来的某个时候,人们必定能够相对自如地运用人工智能,安全地驾车出行.这个时刻何时到来我无法预见:但我相信,彼时“智能”会显…