[NOIp 2014]解方程】的更多相关文章

Description 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) Input 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an Output 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数解的个数. 接下来每行一个整数,按照从小…
题目传送门 题意:求高次方程的解及其个数.其中 1° 我们知道,高次方程是没有求根公式的.但是利用逆向思维,我们可以进行“试根法”,因为题目中给出了所求根的范围.但是多项式系数过于吓人,达到了sxbk的1e10000.longlong显然盛不下.只能看做字符串处理.然而即使是处理成字符串,我们也不可能真的去乘这么多. 2° 考虑取膜.我们把多项式系数进行取膜,它的相对效果和不取膜是一样的.(想一想,为什么) 除了对系数取膜,我们还可以考虑对x取膜. - 如果 X 真的是一个根,那么取模后肯定是…
[题意]已知n次方程(n<=100)及其所有系数(|ai|<=10^10000),求[1,m]中整数解的个数(m<=10^6). [算法]数论 [题解]如果f(x)=0,则有f(x)%p=0. 所以取若干个素数p,将所有数字读入取模并快速计算出所有f(x)%p,若均为0则认为f(x)=0. 优化:利用f(x)%p=f(x%p),可以将枚举范围缩小. #include<cstdio> #include<cstring> #include<algorithm&g…
存代码: #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<cmath> using namespace std; #define M1 100007 #define M2 22901 #define M3 22907 #define Max…
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已知多项式方程: $$a_0+a_1x+a_2x^2+...+a_nx^n=0$$ 求这个方程在[1, m]内的整数解(n 和 m 均为正整数). 输入格式 输入共 n+2 行. 第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开. 接下来的 n+1 行每行包含一个整数,依次为$a_0,a_…
3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Description 输入文件名为equation.in. 输入共n+2行. 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,a2,……,an. 输出描述 Output Description 输出文件名为equation.out. 第一行输出方程在…
Problem P2312 [解方程] >>> record 用时: 1166ms 空间: 780KB(0.76MB) 代码长度: 2.95KB 提交记录: R9909587 >>> 注: 使用了 o1 优化 o2 优化 o3 优化 快读快输 >>> Solution 30 pts 枚举,使用 int,直接按题目所说暴力乱搞一通 Unaccepted 30 Ac:3 Wa:7 50 pts ∣a_i∣≤10^10000 所以高精度. 然而慢的一皮: U…
题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,vy),硬币向圆盘撞过去,碰到圆盘后会以相反方向相同速度回来(好像有点违背物理规律啊,但是题目是这样,没办法).问硬币某一部分在圆形区域内的总时间. 解法: 解方程,求 (x+vx*t,y+vy*t) 代入圆形区域方程是否有解,如果没解,说明硬币运动轨迹与圆形区域都不相交,答案为0 如果有解,再看代入圆盘有…
P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,…
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 m 均为正整数).[输入]输入文件名为 equation.in.输入共 n+2 行.第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开.接下来的 n+1 行每行包含一个整数,依次为a ! , a ! , a ! , ... , a ! .[输出]输出文件名为 equation.out.第一…