im2col:将卷积运算转为矩阵相乘】的更多相关文章

目录 im2col实现 优缺点分析 参考 博客:blog.shinelee.me | 博客园 | CSDN im2col实现 如何将卷积运算转为矩阵相乘?直接看下面这张图,以下图片来自论文High Performance Convolutional Neural Networks for Document Processing: 上图为3D卷积的传统计算方式与矩阵乘法计算方式的对比,传统卷积运算是将卷积核以滑动窗口的方式在输入图上滑动,当前窗口内对应元素相乘然后求和得到结果,一个窗口一个结果.相…
Opencv中Mat矩阵相乘——点乘.dot.mul运算详解 2016年09月02日 00:00:36 -牧野- 阅读数:59593 标签: Opencv矩阵相乘点乘dotmul 更多 个人分类: OpenCV 所属专栏: OpenCV从入门到转行   版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/dcrmg/article/details/52404580 Mat矩阵点乘——A*B Opencv重载了运算符“*”,姑且称之为Mat矩阵“点乘”,其中…
1 conv(向量卷积运算) 所谓两个向量卷积,说白了就是多项式乘法.比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x. 卷积就是“两个多项式相乘取系数”.(1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3所以p和q卷积的结果就是[1 3 5 3]. 记住,当确定是用升幂或是降…
来源:https://www.cnblogs.com/hyb221512/p/9276621.html 1.conv(向量卷积运算) 所谓两个向量卷积,说白了就是多项式乘法.比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x. 卷积就是“两个多项式相乘取系数”.(1+2x+3x^2)×(1+x…
前文 在<利用Hadoop实现超大矩阵相乘之我见(一)>中我们所介绍的方法有着“计算过程中文件占用存储空间大”这个缺陷,本文中我们着重解决这个问题. 矩阵相乘计算思想 传统的矩阵相乘方法为行.列相乘的方式,即利用左矩阵的一行乘以右矩阵的一列.不过该方法针对稀疏矩阵相乘,会造成过多的无效计算,降低计算效率.为了解决这个问题,本发明采用列.行相乘计算方式,即利用左矩阵的一列中的元素与右矩阵对应行中的所有元素依次相乘,该方法有效避免了稀疏矩阵相乘过程中产生的无效计算.具体计算过程示意图如图1所示.…
前记 最近,公司一位挺优秀的总务离职,欢送宴上,她对我说“你是一位挺优秀的程序员”,刚说完,立马道歉说“对不起,我说你是程序员是不是侮辱你了?”我挺诧异,程序员现在是很低端,很被人瞧不起的工作吗?或许现在连卖盗版光盘的,修电脑的都称自己为搞IT的,普通人可能已经分不清搞IT的到底是做什么的了.其实我想说,程序员也分很多种的,有些只能写if-then-else,有些只能依葫芦画瓢,但真正的程序员我想肯定是某个领域的专家,或许他是一位数学家,或许他是一位物理学家,再或许他是计算机某个细分领域的专家,…
偶尔在算法课本上面看到矩阵相乘的算法,联想到自己曾经在蓝桥杯系统上曾经做过一道矩阵相乘的题目,当时用的是普通的矩阵相乘的方法,效率极低,勉强通过编译.所以决定研究一下Strassen矩阵相乘算法,由于本人比较懒,所以就从网上找了一些相关的资料供大家参考: 下面内容均转自 https://i.cnblogs.com/EditPosts.aspx?opt=1 请尊重版权,支持原创. 题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的…
前篇戳:dp入门——由分杆问题认识动态规划 导语 刷过一些算法题,就会十分珍惜“方法论”这种东西.Leetcode上只有题目.讨论和答案,没有方法论.往往答案看起来十分切中要害,但是从看题目到得到思路的那一段,就是绕不过去.楼主有段时间曾把这个过程归结于智商和灵感的结合,直到有天为了搞懂Leetcode上一位老兄的题型总结,花两天时间学习了回溯法,突然有种惊为天人的感觉——原来真正掌握一个算法是应该触类旁通的,而不是将题中一个细节换掉就又成了新题…… 掌握方法论绝对是一种很爽的感觉.看起来好像很…
图像处理中的卷积运算一般都用来平滑图像.尖锐图像求边缘等等.主要看你选择什么样的核函数了.现在核函数很多,比如高斯平滑核函数,sobel核函数,canny核函数等等.这里举一个sobel核函数的例子来求图像的梯度. Sobel自动求边缘图(梯度图)在opencv里有特定的函数,具体参照opencv文档(需要自己设定阈值).这里主要讲怎么用已知的sobel算子(核函数)去平滑当前图像. C++:void filter2D(InputArraysrc, OutputArray dst, int dd…
概述 卷积是一种线性运算,其本质是滑动平均思想,广泛应用于图像滤波.而随着人工智能及深度学习的发展,卷积也在神经网络中发挥重要的作用,如卷积神经网络.本参考设计主要介绍如何基于INTEL 硬浮点的DSP Block实现32位单精度浮点的卷积运算,而针对定点及低精度的浮点运算,则需要对硬浮点DSP Block进行相应的替换即可. 原理分析 设:f(x), g(x)是两个可积函数,作积分: 随着x的不同取值,该积分定义了一个新的函数h(x),称为函数f(x)与g(x)的卷积,记为h(x)=f(x)*…