Adaboost的意义】的更多相关文章

Adaboost是广义上的提升方法(boosting method)的一个特例.广泛应用于人脸识别等领域. 它的基本思想是,“三个臭皮匠赛过诸葛亮”,即用多个弱分类器的线性加权,来得到一个强的分类器.弱分类器到底有多“弱”呢?在某些情境下,xi>v就是一个弱分类器,它只对输入特征的某一个维度做判断,真是够弱了. 首先,弱分类器是一个一个的学习的,而且,根据这些弱分类器的表现,配以不同的权重,表现好的弱分类器,权重就大一点,表现不好的弱分类器,权重就小一点. 其次,在每一次学习时,每个弱分类器其实…
看这篇文章的前提:已经看了PRML中的Adaboost的算法流程 看懂下面的内容必须牢牢记住:Adaboost使用的误差函数是指数误差 文章主要目的:理解样本抽样的权值是为什么那样变化的. 得出的结论:训练第m个基分类器ym时,样本n的抽样权重是fm-1在样本n上的指数误差 当ym将第n个样本分对了时,则权值保持不变,否则权值增加exp{αm}(>1)倍   (1) (2) (3) (1)表示分类器fm的误差函数是指数误差函数 (2)表示分类器fm是一系列的基函数(yl,即基分类器)的加权和,α…
在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做一个总结. 1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归. AdaBo…
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:57:18 大家好,今天我们讲一下第14章combining models,这一章是联合模型,通过将多个模型以某种形式结合起来,可以获得比单个模型更好的预测效果.包括这几部分:committees, 训练多个不同的模型,取其平均值作为最终预测值. boosting: 是committees的特殊形式,顺序训练L个模型,每个模型的训练依赖前一个模型的训练结果.决策树:不同模型负责输入变量的不同区间的预测,每个样本选择…
很早之前就做过一些关于人脸检测和目标检测的课题,一直都没有好好总结出来,趁着这个机会,写个总结,希望所写的内容能给研究同类问题的博友一些见解和启发!!博客里面涉及的公式太繁琐了,直接截图了. 转载请注明出处:http://www.cnblogs.com/adong7639/p/4194307.html 一 人脸检测之问题概述 人脸检测是CV领域的一个经典课题,很多学者对人脸检测做了深入的研究,但真正的分水岭却是在2001年viola等大神发表的那篇经典之作Rapid Object Detecti…
①起源:Boosting算法 Boosting算法的目的是每次基于全部数据集,通过使用同一种分类器不同的抽取参数方法(如决策树,每次都可以抽取不同的特征维度来剖分数据集) 训练一些不同弱分类器(单次分类错误率>0.5),然后将其组合起来,综合评估(默认认为每个分类器权重等价)进行分类. AdaBoost算法进行了对其进行了改进. 一.每次训练分类器时,给予每条数据用于计算误差的不同权重D. 二.每个分类器,给予用于分类的不同权重alpha. 两种权的使用,使得AdaBoost在组合分类器时,能够…
关于boost算法 boost算法是基于PAC学习理论(probably approximately correct)而建立的一套集成学习算法(ensemble learning).其根本思想在于通过多个简单的弱分类器,构建出准确率很高的强分类器,PAC学习理论证实了这一方法的可行性.下面关于几种Boost算法的比较,是基于文章<Additive Logistic Regression a Statistical View of Boosting>整理的. 几种boost算法步骤 通常使用最多…
三 Adaboost 算法 AdaBoost 是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,即弱分类器,然后把这些弱分类器集合起来,构造一个更强的最终分类器.(很多博客里说的三个臭皮匠赛过诸葛亮) 算法本身是改变数据分布实现的,它根据每次训练集之中的每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值.将修改权值的新数据送给下层分类器进行训练,然后将每次训练得到的分类器融合起来,作为最后的决策分类器. 完整的adaboost算法如下 简单来说,Adaboost…
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.Adaptive Boosting 的动机 通过组合多个弱分类器(hypothese),构建一个更强大的分类器(hypothese),从而达到"三个臭皮匠赛过诸葛亮"的效果. 例如实际中,可以通过简单的"横""竖"组成比较复杂的模型. 二.样本权重 AdaBoost元算法中有个很重要的概念叫样本权重u. 学习算法A使用…
给你这些水果图片,告诉你哪些是苹果.那么现在,让你总结一下哪些是苹果? 1)苹果都是圆的.我们发现,有些苹果不是圆的.有些水果是圆的但不是苹果, 2)其中到这些违反"苹果都是圆的"这一规则的图片,我们得到"苹果都是圆的,可能是红色或者绿色"..我们发现还是有些图片违反这一规则: 3)其中到违反规则的图片,我们发现"苹果都是圆的,可能是红色或者绿色,而且有梗". 至此分类完成. 模拟这一过程,就是adaBoost算法. 首先从一个弱分类器开始,然后…